Joint Extraction of Uygur Medicine Knowledge with Edge Computing

IF 6.6 1区 计算机科学 Q1 Multidisciplinary Tsinghua Science and Technology Pub Date : 2024-12-09 DOI:10.26599/TST.2024.9010006
Fan Lu;Quan Qi;Huaibin Qin
{"title":"Joint Extraction of Uygur Medicine Knowledge with Edge Computing","authors":"Fan Lu;Quan Qi;Huaibin Qin","doi":"10.26599/TST.2024.9010006","DOIUrl":null,"url":null,"abstract":"Edge computing, a novel paradigm for performing computations at the network edge, holds significant relevance in the healthcare domain for extracting medical knowledge from traditional Uygur medical texts. Medical knowledge extraction methods based on edge computing deploy deep learning models on edge devices to achieve localized entity and relation extraction. This approach avoids transferring substantial sensitive data to cloud data centers, effectively safeguarding the privacy of healthcare services. However, existing relation extraction methods mainly employ a sequential pipeline approach, which classifies relations between determined entities after entity recognition. This mode faces challenges such as error propagation between tasks, insufficient consideration of dependencies between the two subtasks, and the neglect of interrelations between different relations within a sentence. To address these challenges, a joint extraction model with parameter sharing in edge computing is proposed, named CoEx-Bert. This model leverages shared parameterization between two models to jointly extract entities and relations. Specifically, CoEx-Bert employs two models, each separately sharing hidden layer parameters, and combines these two loss functions for joint backpropagation to optimize the model parameters. Additionally, it effectively resolves the issue of entity overlapping when extracting knowledge from unstructured Uygur medical texts by considering contextual relations. Finally, this model is deployed on edge devices for real-time extraction and inference of Uygur medical knowledge. Experimental results demonstrate that CoEx-Bert outperforms existing state-of-the-art methods, achieving accuracy, recall, and F1-score of 90.65%, 92.45%, and 91.54%, respectively, in the Uygur traditional medical literature dataset. These improvements represent a 6.45% increase in accuracy, a 9.45% increase in recall, and a 7.95% increase in F1-score compared to the baseline.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"782-795"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786944","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786944/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Edge computing, a novel paradigm for performing computations at the network edge, holds significant relevance in the healthcare domain for extracting medical knowledge from traditional Uygur medical texts. Medical knowledge extraction methods based on edge computing deploy deep learning models on edge devices to achieve localized entity and relation extraction. This approach avoids transferring substantial sensitive data to cloud data centers, effectively safeguarding the privacy of healthcare services. However, existing relation extraction methods mainly employ a sequential pipeline approach, which classifies relations between determined entities after entity recognition. This mode faces challenges such as error propagation between tasks, insufficient consideration of dependencies between the two subtasks, and the neglect of interrelations between different relations within a sentence. To address these challenges, a joint extraction model with parameter sharing in edge computing is proposed, named CoEx-Bert. This model leverages shared parameterization between two models to jointly extract entities and relations. Specifically, CoEx-Bert employs two models, each separately sharing hidden layer parameters, and combines these two loss functions for joint backpropagation to optimize the model parameters. Additionally, it effectively resolves the issue of entity overlapping when extracting knowledge from unstructured Uygur medical texts by considering contextual relations. Finally, this model is deployed on edge devices for real-time extraction and inference of Uygur medical knowledge. Experimental results demonstrate that CoEx-Bert outperforms existing state-of-the-art methods, achieving accuracy, recall, and F1-score of 90.65%, 92.45%, and 91.54%, respectively, in the Uygur traditional medical literature dataset. These improvements represent a 6.45% increase in accuracy, a 9.45% increase in recall, and a 7.95% increase in F1-score compared to the baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用边缘计算联合提取维吾尔医药知识
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
期刊最新文献
Front Cover Contents Cooperative Digital Healthcare Task Scheduling and Resource Management in Edge Intelligence Systems Study of Driver's Perception in Driving Tasks Based on Naturalistic Driving Experiments and fNIRS Measurement Deep Time-Frequency Denoising Transform Defense for Spectrum Monitoring in Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1