A Survey of the Application of Neural Networks to Event Extraction

IF 6.6 1区 计算机科学 Q1 Multidisciplinary Tsinghua Science and Technology Pub Date : 2024-12-09 DOI:10.26599/TST.2023.9010139
Jianye Xie;Yulan Zhang;Huaizhen Kou;Xiaoran Zhao;Zhikang Feng;Lekang Song;Weiyi Zhong
{"title":"A Survey of the Application of Neural Networks to Event Extraction","authors":"Jianye Xie;Yulan Zhang;Huaizhen Kou;Xiaoran Zhao;Zhikang Feng;Lekang Song;Weiyi Zhong","doi":"10.26599/TST.2023.9010139","DOIUrl":null,"url":null,"abstract":"Event extraction is an important part of natural language information extraction, and it's widely employed in other natural language processing tasks including question answering and machine reading comprehension. However, there is a lack of recent comprehensive survey papers on event extraction. In the past few years, numerous high-quality and innovative event extraction methods have been proposed, making it necessary to consolidate these new developments with previous work in order to provide a clear overview for researchers and serve as a reference for future studies. In addition, event detection is a fundamental sub-task in event extraction, previous survey papers have often overlooked the related work on event detection. Therefore, this paper aims to bridge these gaps by presenting a comprehensive survey of event extraction, including recent advancements and an analysis of previous research on event detection. The resources for event extraction are first introduced in this research, and then the numerous neural network models currently employed in event extraction tasks are divided into four types: word sequence-based methods, graph-based neural network methods, external knowledge-based approaches, and prompt-based approaches. We compare and contrast them in depth, pointing out the flaws and difficulties with existing research. Finally, we discuss the future of event extraction development.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"748-768"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786941","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786941/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Event extraction is an important part of natural language information extraction, and it's widely employed in other natural language processing tasks including question answering and machine reading comprehension. However, there is a lack of recent comprehensive survey papers on event extraction. In the past few years, numerous high-quality and innovative event extraction methods have been proposed, making it necessary to consolidate these new developments with previous work in order to provide a clear overview for researchers and serve as a reference for future studies. In addition, event detection is a fundamental sub-task in event extraction, previous survey papers have often overlooked the related work on event detection. Therefore, this paper aims to bridge these gaps by presenting a comprehensive survey of event extraction, including recent advancements and an analysis of previous research on event detection. The resources for event extraction are first introduced in this research, and then the numerous neural network models currently employed in event extraction tasks are divided into four types: word sequence-based methods, graph-based neural network methods, external knowledge-based approaches, and prompt-based approaches. We compare and contrast them in depth, pointing out the flaws and difficulties with existing research. Finally, we discuss the future of event extraction development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络在事件提取中的应用概览
事件提取是自然语言信息提取的重要组成部分,在问题解答和机器阅读理解等其他自然语言处理任务中也得到了广泛应用。然而,近期缺乏关于事件提取的综合性研究论文。在过去几年中,人们提出了许多高质量的创新事件提取方法,因此有必要将这些新发展与之前的工作进行整合,以便为研究人员提供一个清晰的概览,并为未来的研究提供参考。此外,事件检测是事件提取的一个基本子任务,以往的调查论文往往忽略了事件检测方面的相关工作。因此,本文旨在通过对事件提取的全面考察,包括最新进展和对以往事件检测研究的分析,来弥补这些不足。本文首先介绍了事件提取的资源,然后将目前用于事件提取任务的众多神经网络模型分为四种类型:基于词序的方法、基于图的神经网络方法、基于外部知识的方法和基于提示的方法。我们对这些方法进行了深入对比,指出了现有研究的缺陷和困难。最后,我们讨论了事件提取的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
期刊最新文献
Front Cover Contents Cooperative Digital Healthcare Task Scheduling and Resource Management in Edge Intelligence Systems Study of Driver's Perception in Driving Tasks Based on Naturalistic Driving Experiments and fNIRS Measurement Deep Time-Frequency Denoising Transform Defense for Spectrum Monitoring in Integrated Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1