A smart spiropyran-containing cellulose material for photopatterning, temperature and humidity sensing†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2024-10-30 DOI:10.1039/D4QM00773E
Xue Zhou, Jishuai Liu, Congxia Xie, Zhongtao Wu, Lei Zhang and Xiliang Luo
{"title":"A smart spiropyran-containing cellulose material for photopatterning, temperature and humidity sensing†","authors":"Xue Zhou, Jishuai Liu, Congxia Xie, Zhongtao Wu, Lei Zhang and Xiliang Luo","doi":"10.1039/D4QM00773E","DOIUrl":null,"url":null,"abstract":"<p >Based on their stimuli-responsiveness, smart materials are able to undergo controllable physicochemical changes. As compared to the responsiveness to one specific stimulus, multiple stimuli-responsiveness would make smart materials adaptable to diverse environments, which is highly desired in the design of smart materials but appreciably more difficult to realize. Herein, an ammonium surfactant (SPA) based on spiropyran is designed for complexing with carboxymethylcellulose through an electrostatic route, affording a soft cellulose material (CMC–SPA) in solvent-free conditions. Thanks to the molecular design of SPA and the anisotropic arrangement of cellulose on SPA molecules, CMC–SPA exhibits triple stimuli-responsiveness by responding to light, heat and humidity. With good thermodynamic stabilities of different color states, CMC–SPA could well record optical information by changing colors under UV and visible irradiations. More interestingly, linear relationships between UV-visible absorption and temperature/humidity are established, endowing CMC–SPA with the functions of recording ceiling temperatures in inaccessible scenarios and indicating real-time environmental humidity. This study provides a design strategy for fabricating multiple stimuli-responsive materials, affording a new route for gaining smart biomaterials from biomacromolecules.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 100-108"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00773e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on their stimuli-responsiveness, smart materials are able to undergo controllable physicochemical changes. As compared to the responsiveness to one specific stimulus, multiple stimuli-responsiveness would make smart materials adaptable to diverse environments, which is highly desired in the design of smart materials but appreciably more difficult to realize. Herein, an ammonium surfactant (SPA) based on spiropyran is designed for complexing with carboxymethylcellulose through an electrostatic route, affording a soft cellulose material (CMC–SPA) in solvent-free conditions. Thanks to the molecular design of SPA and the anisotropic arrangement of cellulose on SPA molecules, CMC–SPA exhibits triple stimuli-responsiveness by responding to light, heat and humidity. With good thermodynamic stabilities of different color states, CMC–SPA could well record optical information by changing colors under UV and visible irradiations. More interestingly, linear relationships between UV-visible absorption and temperature/humidity are established, endowing CMC–SPA with the functions of recording ceiling temperatures in inaccessible scenarios and indicating real-time environmental humidity. This study provides a design strategy for fabricating multiple stimuli-responsive materials, affording a new route for gaining smart biomaterials from biomacromolecules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于光图案化、温度和湿度传感的含螺吡喃的智能纤维素材料†。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Back cover New heater@luminescent thermometer nano-objects: Prussian blue core@silica shell loaded with a β-diketonate Tb3+/Eu3+ complex† Multiscale engineering of anode catalyst layers in proton exchange membrane water electrolyzers Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1