Qianqian Liu, Yanfei Wang, Xiao Liang, Hui Chen and Xiaoxin Zou
{"title":"Multiscale engineering of anode catalyst layers in proton exchange membrane water electrolyzers","authors":"Qianqian Liu, Yanfei Wang, Xiao Liang, Hui Chen and Xiaoxin Zou","doi":"10.1039/D4QM00842A","DOIUrl":null,"url":null,"abstract":"<p >Proton exchange membrane water electrolyzers (PEMWEs) play a key role in promoting the development of the clean hydrogen energy industry and accelerating the achievement of carbon neutrality goals due to their advantages of high efficiency, low energy consumption, ease of integration and fast response. In PEMWEs, the water oxidation reaction in the anode catalytic layer is the core process, and its catalytic efficiency directly determines the performance and stability of the electrolyzers. Therefore, enhancement of reactant transport, electron/proton transfer, and oxygen release by cross-scale optimisation of the anode catalytic layer is crucial for improving the efficiency of PEMWEs. This article highlights recent advances in optimizing the anode catalytic layer of PEMWEs through multi-scale engineering strategies. We first introduce the basic structure of PEMWEs and the importance of the anode catalyst. Subsequently, we discuss in detail the multiscale optimisation strategy of the anode catalyst layer, including the design of active sites at the atomic scale, the morphology regulation at the nano/micro scale, the catalytic layer optimization at the macroscopic scale and the comprehensive synergistic effect of multiscale engineering. Finally, we conclude and look forward to the existing challenges and future research directions for optimising anode catalyst layers by multiscale engineering.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 30-44"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00842a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) play a key role in promoting the development of the clean hydrogen energy industry and accelerating the achievement of carbon neutrality goals due to their advantages of high efficiency, low energy consumption, ease of integration and fast response. In PEMWEs, the water oxidation reaction in the anode catalytic layer is the core process, and its catalytic efficiency directly determines the performance and stability of the electrolyzers. Therefore, enhancement of reactant transport, electron/proton transfer, and oxygen release by cross-scale optimisation of the anode catalytic layer is crucial for improving the efficiency of PEMWEs. This article highlights recent advances in optimizing the anode catalytic layer of PEMWEs through multi-scale engineering strategies. We first introduce the basic structure of PEMWEs and the importance of the anode catalyst. Subsequently, we discuss in detail the multiscale optimisation strategy of the anode catalyst layer, including the design of active sites at the atomic scale, the morphology regulation at the nano/micro scale, the catalytic layer optimization at the macroscopic scale and the comprehensive synergistic effect of multiscale engineering. Finally, we conclude and look forward to the existing challenges and future research directions for optimising anode catalyst layers by multiscale engineering.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.