Laser irradiation-induced two-photon photolysis of sulfates for photoluminescent sulfur quantum dots†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2024-10-15 DOI:10.1039/D4QM00733F
Shuxian Wei, Hao Huang, Ningning He, Taiping Hu, Jijun Huang, Yunyu Cai, Yixing Ye, Pengfei Li, Xueling Lei and Changhao Liang
{"title":"Laser irradiation-induced two-photon photolysis of sulfates for photoluminescent sulfur quantum dots†","authors":"Shuxian Wei, Hao Huang, Ningning He, Taiping Hu, Jijun Huang, Yunyu Cai, Yixing Ye, Pengfei Li, Xueling Lei and Changhao Liang","doi":"10.1039/D4QM00733F","DOIUrl":null,"url":null,"abstract":"<p >Recently, sulfur quantum dots (SQDs) have gained great research interest because of their excellent optical properties and low toxicity, thus inspiring researchers to make efforts to explore a simpler and faster approach for the synthesis of SQDs. Herein, a facile and green bottom-up strategy is first proposed to prepare SQDs <em>via</em> 532 nm laser irradiation of a sulfate-containing solution without any extra additives. The reduction of sulfates to elemental sulfur under visible light is demonstrated for the first time. Furthermore, fluorescence characterization combined with density functional theory calculations revealed that the two-photon dissociation of sulfates plays a critical role in the formation of SQDs under laser irradiation. The nucleation mechanisms of self-assembling of sulfur element were revealed by molecular dynamics.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 1","pages":" 45-54"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00733f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, sulfur quantum dots (SQDs) have gained great research interest because of their excellent optical properties and low toxicity, thus inspiring researchers to make efforts to explore a simpler and faster approach for the synthesis of SQDs. Herein, a facile and green bottom-up strategy is first proposed to prepare SQDs via 532 nm laser irradiation of a sulfate-containing solution without any extra additives. The reduction of sulfates to elemental sulfur under visible light is demonstrated for the first time. Furthermore, fluorescence characterization combined with density functional theory calculations revealed that the two-photon dissociation of sulfates plays a critical role in the formation of SQDs under laser irradiation. The nucleation mechanisms of self-assembling of sulfur element were revealed by molecular dynamics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光辐照诱导的硫酸盐双光子光解用于光致发光硫量子点†
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Back cover New heater@luminescent thermometer nano-objects: Prussian blue core@silica shell loaded with a β-diketonate Tb3+/Eu3+ complex† Multiscale engineering of anode catalyst layers in proton exchange membrane water electrolyzers Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1