Comprehensive numerical analysis of doping controlled efficiency in lead-free CsSn1−xGexI3 perovskite solar cell

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Applied Physics A Pub Date : 2024-12-16 DOI:10.1007/s00339-024-08125-y
Nazmul Hasan, M. Hussayeen Khan Anik, Mohammed Mehedi Hasan, Sharnali Islam, Alamgir Kabir
{"title":"Comprehensive numerical analysis of doping controlled efficiency in lead-free CsSn1−xGexI3 perovskite solar cell","authors":"Nazmul Hasan,&nbsp;M. Hussayeen Khan Anik,&nbsp;Mohammed Mehedi Hasan,&nbsp;Sharnali Islam,&nbsp;Alamgir Kabir","doi":"10.1007/s00339-024-08125-y","DOIUrl":null,"url":null,"abstract":"<div><p>One effective way to prevent toxicity and improve the stability of materials for photovoltaic applications is to exclude lead and organic molecules from perovskite materials. Specifically, the CsSn<sub>1−x</sub>Ge<sub>x</sub>I<sub>3</sub> appears to be a promising contender; nonetheless, it requires optimization, particularly bandgap tuning by doping concentration modifications. In this study, density functional theory (DFT) was employed to comprehensively analyze the electronic properties of CsSn<sub>1−x</sub>Ge<sub>x</sub>I<sub>3</sub> that influenced light-matter interactions tuning of the perovskite materials by varying composition in B site atoms. We use the solar cell capacitance (SCAPS-1D) simulator to compute device performance; however, it computes the absorption spectrum using a simplified mathematical function that approximates the actual spectrum. To achieve a quantum-mechanical level of accuracy DFT extracted parameters like absorption spectra and bandgap were fed into SCAPS-1D. We find that increasing the Ge concentration leads to a higher bandgap and improved absorption profile, thereby enhancing solar energy conversion efficiency. Thermal and field distribution analyses were also done for the optimized device through a finite-difference time-domain (FDTD) framework. By optimizing the absorber layer with a 75% Ge concentration, we achieve a remarkable PCE of 23.55%. Our findings guide future research in designing high-performance non-leaded halide PSCs, paving the way for low-cost, stable, and highly efficient solar cells through atomic doping-tuned perovskite absorber layers.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08125-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

One effective way to prevent toxicity and improve the stability of materials for photovoltaic applications is to exclude lead and organic molecules from perovskite materials. Specifically, the CsSn1−xGexI3 appears to be a promising contender; nonetheless, it requires optimization, particularly bandgap tuning by doping concentration modifications. In this study, density functional theory (DFT) was employed to comprehensively analyze the electronic properties of CsSn1−xGexI3 that influenced light-matter interactions tuning of the perovskite materials by varying composition in B site atoms. We use the solar cell capacitance (SCAPS-1D) simulator to compute device performance; however, it computes the absorption spectrum using a simplified mathematical function that approximates the actual spectrum. To achieve a quantum-mechanical level of accuracy DFT extracted parameters like absorption spectra and bandgap were fed into SCAPS-1D. We find that increasing the Ge concentration leads to a higher bandgap and improved absorption profile, thereby enhancing solar energy conversion efficiency. Thermal and field distribution analyses were also done for the optimized device through a finite-difference time-domain (FDTD) framework. By optimizing the absorber layer with a 75% Ge concentration, we achieve a remarkable PCE of 23.55%. Our findings guide future research in designing high-performance non-leaded halide PSCs, paving the way for low-cost, stable, and highly efficient solar cells through atomic doping-tuned perovskite absorber layers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无铅 CsSn1-xGexI3 包晶太阳能电池中掺杂控制效率的综合数值分析
防止光伏应用材料产生毒性并提高其稳定性的一个有效方法是将铅和有机分子排除在过氧化物材料之外。具体来说,CsSn1-xGexI3 似乎是一个很有前途的竞争者;然而,它需要优化,特别是通过掺杂浓度的改变来调整带隙。本研究采用密度泛函理论(DFT)全面分析了 CsSn1-xGexI3 的电子特性,这些特性通过改变 B 位点原子的组成影响了包晶材料的光物质相互作用调整。我们使用太阳能电池电容(SCAPS-1D)模拟器来计算器件性能;但是,该模拟器使用近似实际光谱的简化数学函数来计算吸收光谱。为了达到量子力学的精确度,我们将 DFT 提取的参数(如吸收光谱和带隙)输入 SCAPS-1D。我们发现,增加 Ge 浓度可提高带隙并改善吸收曲线,从而提高太阳能转换效率。我们还通过有限差分时域(FDTD)框架对优化后的器件进行了热分布和场分布分析。通过优化具有 75% Ge 浓度的吸收层,我们实现了 23.55% 的显著 PCE。我们的研究结果为今后设计高性能无掺杂卤化物 PSC 的研究提供了指导,为通过原子掺杂调谐过氧化物吸收层实现低成本、稳定和高效太阳能电池铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
期刊最新文献
Effect of copper substitution on the structural, optical, and magnetic properties of β-Ga₂O₃ powders Polyethylene Terephthalate (PET) Recycling: Gamma irradiation impact on crystallinity, chemical structure and thermal stability Influence of cobalt redox couple concentration on the characteristics of liquid and quasi-solid electrolytes and on the photovoltaic parameters of dye-sensitised solar cells Synthesis and characterization of Zn3Mn0.5Li0.2Ti4−xCexO12 nanostructures: spectroscopic and electrochemical insights for enhanced storage performance Real-time monitoring method for gadolinium concentration in a water Cherenkov detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1