Nazmul Hasan, M. Hussayeen Khan Anik, Mohammed Mehedi Hasan, Sharnali Islam, Alamgir Kabir
{"title":"Comprehensive numerical analysis of doping controlled efficiency in lead-free CsSn1−xGexI3 perovskite solar cell","authors":"Nazmul Hasan, M. Hussayeen Khan Anik, Mohammed Mehedi Hasan, Sharnali Islam, Alamgir Kabir","doi":"10.1007/s00339-024-08125-y","DOIUrl":null,"url":null,"abstract":"<div><p>One effective way to prevent toxicity and improve the stability of materials for photovoltaic applications is to exclude lead and organic molecules from perovskite materials. Specifically, the CsSn<sub>1−x</sub>Ge<sub>x</sub>I<sub>3</sub> appears to be a promising contender; nonetheless, it requires optimization, particularly bandgap tuning by doping concentration modifications. In this study, density functional theory (DFT) was employed to comprehensively analyze the electronic properties of CsSn<sub>1−x</sub>Ge<sub>x</sub>I<sub>3</sub> that influenced light-matter interactions tuning of the perovskite materials by varying composition in B site atoms. We use the solar cell capacitance (SCAPS-1D) simulator to compute device performance; however, it computes the absorption spectrum using a simplified mathematical function that approximates the actual spectrum. To achieve a quantum-mechanical level of accuracy DFT extracted parameters like absorption spectra and bandgap were fed into SCAPS-1D. We find that increasing the Ge concentration leads to a higher bandgap and improved absorption profile, thereby enhancing solar energy conversion efficiency. Thermal and field distribution analyses were also done for the optimized device through a finite-difference time-domain (FDTD) framework. By optimizing the absorber layer with a 75% Ge concentration, we achieve a remarkable PCE of 23.55%. Our findings guide future research in designing high-performance non-leaded halide PSCs, paving the way for low-cost, stable, and highly efficient solar cells through atomic doping-tuned perovskite absorber layers.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08125-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
One effective way to prevent toxicity and improve the stability of materials for photovoltaic applications is to exclude lead and organic molecules from perovskite materials. Specifically, the CsSn1−xGexI3 appears to be a promising contender; nonetheless, it requires optimization, particularly bandgap tuning by doping concentration modifications. In this study, density functional theory (DFT) was employed to comprehensively analyze the electronic properties of CsSn1−xGexI3 that influenced light-matter interactions tuning of the perovskite materials by varying composition in B site atoms. We use the solar cell capacitance (SCAPS-1D) simulator to compute device performance; however, it computes the absorption spectrum using a simplified mathematical function that approximates the actual spectrum. To achieve a quantum-mechanical level of accuracy DFT extracted parameters like absorption spectra and bandgap were fed into SCAPS-1D. We find that increasing the Ge concentration leads to a higher bandgap and improved absorption profile, thereby enhancing solar energy conversion efficiency. Thermal and field distribution analyses were also done for the optimized device through a finite-difference time-domain (FDTD) framework. By optimizing the absorber layer with a 75% Ge concentration, we achieve a remarkable PCE of 23.55%. Our findings guide future research in designing high-performance non-leaded halide PSCs, paving the way for low-cost, stable, and highly efficient solar cells through atomic doping-tuned perovskite absorber layers.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.