Interaction of CO, CO2, CSO, H2O, N2O, NO, NO2, O2, ONH, and SO2 gases onto BNNT(m,n)_x, (m = 3, 5, 7; n = 0, 3, 5, 7; x = 3–9)

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Modeling Pub Date : 2024-12-16 DOI:10.1007/s00894-024-06252-0
Karwan Wasman Qadir, Mohsen Doust Mohammadi, Firas K. Mohamad Alosfur, Hewa Y. Abdullah
{"title":"Interaction of CO, CO2, CSO, H2O, N2O, NO, NO2, O2, ONH, and SO2 gases onto BNNT(m,n)_x, (m = 3, 5, 7; n = 0, 3, 5, 7; x = 3–9)","authors":"Karwan Wasman Qadir,&nbsp;Mohsen Doust Mohammadi,&nbsp;Firas K. Mohamad Alosfur,&nbsp;Hewa Y. Abdullah","doi":"10.1007/s00894-024-06252-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>This research investigates two critical areas, providing valuable insights into the properties and interactions of boron nitride nanotubes (BNNTs). Initially, a variety of BNNT structures (BNNT(<i>m</i>,<i>n</i>)_<i>x</i>, where <i>m</i> = 3, 5, 7; <i>n</i> = 0, 3, 5, 7; <i>x</i> = 3–9) with different lengths and diameters are explored to understand their electronic properties. The study then examines the interactions between these nanotubes and several gases (CO, CO<sub>2</sub>, CSO, H<sub>2</sub>O, N<sub>2</sub>O, NO, NO<sub>2</sub>, O<sub>2</sub>, ONH, and SO<sub>2</sub>) to identify the most stable molecular configurations using the bee colony algorithm for global optimization. The primary findings highlight the impact of nanotube diameter on these properties. It was observed that smaller diameters result in a larger energy gap due to increased quantum confinement. Significant charge transfer, especially with CO, was detected, affecting the electronic structure of the nanotubes. The study highlighted that BNNTs exhibit the strongest adsorption tendencies for NO₂, O₂, and SO₂. These findings underscore the critical roles of nanotube diameter and charge transfer in sensor applications and demonstrate the comprehensive utility of various analytical methods in understanding BNNT-gas interaction mechanisms.</p><h3>Methods</h3><p>The research employs a comprehensive computational framework based on density functional theory (DFT). Various DFT methods, such as PBE0, B3LYP(GD3BJ), CAM-B3LYP, HSE06i, M06-2X, and ωB97XD functionals, are utilized along with the Def2tzvp basis set for the calculations. Structural optimizations are performed to ensure accuracy, and modifications to the energy gaps are analyzed using conceptual DFT. Additionally, Total Density of States (TDOS) analyses are conducted. Charge transfer mechanisms are investigated through Natural Bond Orbital (NBO) analysis. The interactions between gases and nanotubes are characterized at critical points using the Quantum Theory of Atoms in Molecules (QTAIM) framework.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06252-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context

This research investigates two critical areas, providing valuable insights into the properties and interactions of boron nitride nanotubes (BNNTs). Initially, a variety of BNNT structures (BNNT(m,n)_x, where m = 3, 5, 7; n = 0, 3, 5, 7; x = 3–9) with different lengths and diameters are explored to understand their electronic properties. The study then examines the interactions between these nanotubes and several gases (CO, CO2, CSO, H2O, N2O, NO, NO2, O2, ONH, and SO2) to identify the most stable molecular configurations using the bee colony algorithm for global optimization. The primary findings highlight the impact of nanotube diameter on these properties. It was observed that smaller diameters result in a larger energy gap due to increased quantum confinement. Significant charge transfer, especially with CO, was detected, affecting the electronic structure of the nanotubes. The study highlighted that BNNTs exhibit the strongest adsorption tendencies for NO₂, O₂, and SO₂. These findings underscore the critical roles of nanotube diameter and charge transfer in sensor applications and demonstrate the comprehensive utility of various analytical methods in understanding BNNT-gas interaction mechanisms.

Methods

The research employs a comprehensive computational framework based on density functional theory (DFT). Various DFT methods, such as PBE0, B3LYP(GD3BJ), CAM-B3LYP, HSE06i, M06-2X, and ωB97XD functionals, are utilized along with the Def2tzvp basis set for the calculations. Structural optimizations are performed to ensure accuracy, and modifications to the energy gaps are analyzed using conceptual DFT. Additionally, Total Density of States (TDOS) analyses are conducted. Charge transfer mechanisms are investigated through Natural Bond Orbital (NBO) analysis. The interactions between gases and nanotubes are characterized at critical points using the Quantum Theory of Atoms in Molecules (QTAIM) framework.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CO、CO2、CSO、H2O、N2O、NO、NO2、O2、ONH和SO2气体与BNNT(m,n)_x, (m = 3,5,7)的相互作用;N = 0,3,5,7;x = 3-9)
背景这项研究调查了两个关键领域,为氮化硼纳米管(BNNTs)的特性和相互作用提供了宝贵的见解。首先,研究人员探索了不同长度和直径的各种 BNNT 结构(BNNT(m,n)_x,其中 m = 3、5、7;n = 0、3、5、7;x = 3-9),以了解它们的电子特性。然后研究了这些纳米管与几种气体(CO、CO2、CSO、H2O、N2O、NO、NO2、O2、ONH 和 SO2)之间的相互作用,利用蜂群算法进行全局优化,找出最稳定的分子构型。主要发现强调了纳米管直径对这些特性的影响。据观察,由于量子束缚增加,较小的直径会导致较大的能隙。研究还检测到显著的电荷转移,特别是与 CO 的电荷转移,从而影响了纳米管的电子结构。研究强调,BNNTs 对 NO₂、O₂ 和 SO₂ 具有最强的吸附倾向。这些发现强调了纳米管直径和电荷转移在传感器应用中的关键作用,并证明了各种分析方法在理解 BNNT 与气体相互作用机制方面的综合效用。该研究采用了基于密度泛函理论(DFT)的综合计算框架,利用各种 DFT 方法,如 PBE0、B3LYP(GD3BJ)、CAM-B3LYP、HSE06i、M06-2X 和 ωB97XD 函数,以及 Def2tzvp 基集进行计算。进行了结构优化以确保准确性,并使用概念 DFT 分析了对能隙的修改。此外,还进行了总态密度 (TDOS) 分析。电荷转移机制通过自然键轨道 (NBO) 分析进行研究。利用分子中原子量子理论 (QTAIM) 框架对气体和纳米管之间在临界点的相互作用进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
期刊最新文献
First-principles studies of the SCl2 adsorption on the doped boron phosphide monolayer Investigation of product formation in the H + H2C = C = CH reaction: a comparison of experimental and theoretical kinetics The effect of pressure on the mechanical properties of hydroxyl-terminated polybutadiene-based propellants Structure and dynamics of anacardic acid in hexane, ethanol, and carbon tetrachloride: a molecular dynamics investigation Exploring the explosive potential of 2,3-dihydrofuran derivatives as novel insensitive high-energy density materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1