Nguyen Truong Thang, Le Truong Giang, Le Hoang Son, Nguyen Long Giang, David Taniar, Nguyen Van Thien, Tran Manh Tuan
{"title":"A novel spatial complex fuzzy inference system for detection of changes in remote sensing images","authors":"Nguyen Truong Thang, Le Truong Giang, Le Hoang Son, Nguyen Long Giang, David Taniar, Nguyen Van Thien, Tran Manh Tuan","doi":"10.1007/s10489-024-06000-0","DOIUrl":null,"url":null,"abstract":"<div><p>To enhance the efficacy of change detection in remote sensing images, we propose a novel Spatial Complex Fuzzy Inference System (Spatial CFIS). This system incorporates fuzzy clustering to generate complex fuzzy rules and employs a triangular spatial complex fuzzy rule base to predict changes in subsequent images compared to their original versions. The weight set of the rule base is optimized using the ADAM algorithm to boost the overall performance of Spatial CFIS. Our proposed model is evaluated using datasets from the weather image data warehouse of the USA Navy and the PRISMA mission funded by the Italian Space Agency (ASI). We compare the performance of Spatial CFIS against other relevant algorithms, including PFC-PFR, SeriesNet, and Deep Slow Feature Analysis (DSFA). The evaluation metrics include RMSE (Root Mean Squared Error), R2 (R Squared), and Analysis of Variance (ANOVA). The experimental results demonstrate that Spatial CFIS outperforms other models by up to 40% in terms of accuracy. In summary, this paper presents an innovative approach to handling remote sensing images by applying a spatial-oriented fuzzy inference system, offering improved accuracy in change detection.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06000-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance the efficacy of change detection in remote sensing images, we propose a novel Spatial Complex Fuzzy Inference System (Spatial CFIS). This system incorporates fuzzy clustering to generate complex fuzzy rules and employs a triangular spatial complex fuzzy rule base to predict changes in subsequent images compared to their original versions. The weight set of the rule base is optimized using the ADAM algorithm to boost the overall performance of Spatial CFIS. Our proposed model is evaluated using datasets from the weather image data warehouse of the USA Navy and the PRISMA mission funded by the Italian Space Agency (ASI). We compare the performance of Spatial CFIS against other relevant algorithms, including PFC-PFR, SeriesNet, and Deep Slow Feature Analysis (DSFA). The evaluation metrics include RMSE (Root Mean Squared Error), R2 (R Squared), and Analysis of Variance (ANOVA). The experimental results demonstrate that Spatial CFIS outperforms other models by up to 40% in terms of accuracy. In summary, this paper presents an innovative approach to handling remote sensing images by applying a spatial-oriented fuzzy inference system, offering improved accuracy in change detection.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.