A novel spatial complex fuzzy inference system for detection of changes in remote sensing images

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2024-12-17 DOI:10.1007/s10489-024-06000-0
Nguyen Truong Thang, Le Truong Giang, Le Hoang Son, Nguyen Long Giang, David Taniar, Nguyen Van Thien, Tran Manh Tuan
{"title":"A novel spatial complex fuzzy inference system for detection of changes in remote sensing images","authors":"Nguyen Truong Thang,&nbsp;Le Truong Giang,&nbsp;Le Hoang Son,&nbsp;Nguyen Long Giang,&nbsp;David Taniar,&nbsp;Nguyen Van Thien,&nbsp;Tran Manh Tuan","doi":"10.1007/s10489-024-06000-0","DOIUrl":null,"url":null,"abstract":"<div><p>To enhance the efficacy of change detection in remote sensing images, we propose a novel Spatial Complex Fuzzy Inference System (Spatial CFIS). This system incorporates fuzzy clustering to generate complex fuzzy rules and employs a triangular spatial complex fuzzy rule base to predict changes in subsequent images compared to their original versions. The weight set of the rule base is optimized using the ADAM algorithm to boost the overall performance of Spatial CFIS. Our proposed model is evaluated using datasets from the weather image data warehouse of the USA Navy and the PRISMA mission funded by the Italian Space Agency (ASI). We compare the performance of Spatial CFIS against other relevant algorithms, including PFC-PFR, SeriesNet, and Deep Slow Feature Analysis (DSFA). The evaluation metrics include RMSE (Root Mean Squared Error), R2 (R Squared), and Analysis of Variance (ANOVA). The experimental results demonstrate that Spatial CFIS outperforms other models by up to 40% in terms of accuracy. In summary, this paper presents an innovative approach to handling remote sensing images by applying a spatial-oriented fuzzy inference system, offering improved accuracy in change detection.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06000-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the efficacy of change detection in remote sensing images, we propose a novel Spatial Complex Fuzzy Inference System (Spatial CFIS). This system incorporates fuzzy clustering to generate complex fuzzy rules and employs a triangular spatial complex fuzzy rule base to predict changes in subsequent images compared to their original versions. The weight set of the rule base is optimized using the ADAM algorithm to boost the overall performance of Spatial CFIS. Our proposed model is evaluated using datasets from the weather image data warehouse of the USA Navy and the PRISMA mission funded by the Italian Space Agency (ASI). We compare the performance of Spatial CFIS against other relevant algorithms, including PFC-PFR, SeriesNet, and Deep Slow Feature Analysis (DSFA). The evaluation metrics include RMSE (Root Mean Squared Error), R2 (R Squared), and Analysis of Variance (ANOVA). The experimental results demonstrate that Spatial CFIS outperforms other models by up to 40% in terms of accuracy. In summary, this paper presents an innovative approach to handling remote sensing images by applying a spatial-oriented fuzzy inference system, offering improved accuracy in change detection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
Comparative performance of machine learning-selected portfolios from dynamic CSI300 constituents: forward vs. backward adjusted stock prices Retraction Note: Location algorithm of transfer stations based on density peak and outlier detection Unsupervised perturbation based self-supervised federated adversarial training A novel spatial complex fuzzy inference system for detection of changes in remote sensing images MSDformer: an autocorrelation transformer with multiscale decomposition for long-term multivariate time series forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1