Investigation of the temperature-dependent functioning of BiFeO3 as a ferroelectric material through X-ray diffraction analysis

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Applied Physics A Pub Date : 2024-12-16 DOI:10.1007/s00339-024-08101-6
Rana Sayed, Ayat Hassanien, Hany Hashim, Ahmed Mabied, Ahmed Ramadan, Soltan Soltan
{"title":"Investigation of the temperature-dependent functioning of BiFeO3 as a ferroelectric material through X-ray diffraction analysis","authors":"Rana Sayed,&nbsp;Ayat Hassanien,&nbsp;Hany Hashim,&nbsp;Ahmed Mabied,&nbsp;Ahmed Ramadan,&nbsp;Soltan Soltan","doi":"10.1007/s00339-024-08101-6","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, Bismuth Ferrite (BiFeO<sub>3</sub>, BFO) has emerged as a promising multiferroic material due to its high antiferromagnetic Néel temperature (T<sub>N</sub> ~ 623–643 K) and ferroelectric Curie temperature (T<sub>C</sub> ~ 1083–1103 K). These properties make BFO a strong candidate for exhibiting a magnetoelectric effect even at room temperature. Understanding the temperature-dependent ferroelectric behavior of BFO is crucial for optimizing its performance in applications where stable ferroelectric behavior at operational temperatures is essential for enhancing device efficiency, stability, and functionality. This study investigates the impact of temperature on the crystallographic characteristics (unit cell type, bond lengths, and dimensions) and ferroelectric performance of BFO. X-ray diffraction and electrical hysteresis measurements confirm the presence of a ferroelectric phase with a rhombohedral R3c structure, along with two phase transitions: the first around 600 K from ferroelectric to paraelectric, and the second near 1050 K from paraelectric back to ferroelectric.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-024-08101-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08101-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, Bismuth Ferrite (BiFeO3, BFO) has emerged as a promising multiferroic material due to its high antiferromagnetic Néel temperature (TN ~ 623–643 K) and ferroelectric Curie temperature (TC ~ 1083–1103 K). These properties make BFO a strong candidate for exhibiting a magnetoelectric effect even at room temperature. Understanding the temperature-dependent ferroelectric behavior of BFO is crucial for optimizing its performance in applications where stable ferroelectric behavior at operational temperatures is essential for enhancing device efficiency, stability, and functionality. This study investigates the impact of temperature on the crystallographic characteristics (unit cell type, bond lengths, and dimensions) and ferroelectric performance of BFO. X-ray diffraction and electrical hysteresis measurements confirm the presence of a ferroelectric phase with a rhombohedral R3c structure, along with two phase transitions: the first around 600 K from ferroelectric to paraelectric, and the second near 1050 K from paraelectric back to ferroelectric.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近年来,铁氧体铋(BiFeO3,BFO)因其较高的反铁磁奈尔温度(TN ~ 623-643 K)和铁电居里温度(TC ~ 1083-1103 K)而成为一种前景广阔的多铁性材料。这些特性使 BFO 即使在室温下也能表现出磁电效应。在一些应用中,工作温度下稳定的铁电行为对提高器件效率、稳定性和功能性至关重要,了解 BFO 随温度变化的铁电行为对优化其性能至关重要。本研究探讨了温度对 BFO 晶体学特性(单胞类型、键长和尺寸)和铁电性能的影响。X 射线衍射和电滞后测量证实了具有斜方 R3c 结构的铁电相的存在,以及两个相变:第一个相变发生在 600 K 左右,从铁电相转变为准电相;第二个相变发生在 1050 K 附近,从准电相转变回铁电相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
期刊最新文献
Study on laser quenching of aircraft gears with rectangular beam based on multi-field coupling mechanism Conductance in graphene through double laser barriers and magnetic field Effect of interfacial microstructure on TiAl-Ti3Al biphase alloy was studied via molecular dynamics Investigation of the improvement of superconducting properties of Nb3Al by introducing non-metallic elements iodine Dielectric, optical properties, γ-ray/neutron shielding capacity of bismo-borate glasses reinforced with CeO2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1