W. Peng, H. Guo, W. Schmidt, A. Piovano, H. Luetkens, C.-T. Chen, Z. Hu, A. C. Komarek
{"title":"Hour-glass spectra due to oxygen doping in cobaltates","authors":"W. Peng, H. Guo, W. Schmidt, A. Piovano, H. Luetkens, C.-T. Chen, Z. Hu, A. C. Komarek","doi":"10.1038/s42005-024-01898-x","DOIUrl":null,"url":null,"abstract":"The magnetic excitation spectrum of most high-temperature superconducting (HTSC) cuprates is hour-glass shaped. The observation of hour-glass spectra in the isostructural Sr-doped cobaltates La2−xSrxCoO4 gives rise to a deeper understanding of these spectra. So far, hour-glass spectra have been only observed in those systems that evolve from incommensurate magnetic peaks. Here, we report on the appearance of hour-glass spectra in oxygen-doped cobaltates La2CoO4+δ. The high-energy part of the hour-glass spectrum of oxygen doped cobaltates is extremely anisotropic with a very prominent stripe-like appearance not seen that clearly in purely Sr-doped compounds. A charge stripe scenario is evidenced by (polarized) neutron diffraction measurements and also corroborated by spin wave simulations. Our results indicate that charge stripes are the origin of the anisotropic stripe- or diamond-shaped high-energy part of the hour-glass spectrum. A link between hour-glass spectra and charge stripes could be of relevance for the physics in HTSC cuprates. The hour-glass magnetic excitation spectrum is a universal feature of most cuprate high-temperature superconductors, yet the exact origins are still debated. Here, using inelastic neutron scattering techniques, the authors report hour-glass magnetic spectra in an oxygen-doped cobaltate La2CoO4+δ and discuss the potential link with charge stripes and the “diamond-shaped” high energy part of the hour-glass spectrum of this system.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01898-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01898-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The magnetic excitation spectrum of most high-temperature superconducting (HTSC) cuprates is hour-glass shaped. The observation of hour-glass spectra in the isostructural Sr-doped cobaltates La2−xSrxCoO4 gives rise to a deeper understanding of these spectra. So far, hour-glass spectra have been only observed in those systems that evolve from incommensurate magnetic peaks. Here, we report on the appearance of hour-glass spectra in oxygen-doped cobaltates La2CoO4+δ. The high-energy part of the hour-glass spectrum of oxygen doped cobaltates is extremely anisotropic with a very prominent stripe-like appearance not seen that clearly in purely Sr-doped compounds. A charge stripe scenario is evidenced by (polarized) neutron diffraction measurements and also corroborated by spin wave simulations. Our results indicate that charge stripes are the origin of the anisotropic stripe- or diamond-shaped high-energy part of the hour-glass spectrum. A link between hour-glass spectra and charge stripes could be of relevance for the physics in HTSC cuprates. The hour-glass magnetic excitation spectrum is a universal feature of most cuprate high-temperature superconductors, yet the exact origins are still debated. Here, using inelastic neutron scattering techniques, the authors report hour-glass magnetic spectra in an oxygen-doped cobaltate La2CoO4+δ and discuss the potential link with charge stripes and the “diamond-shaped” high energy part of the hour-glass spectrum of this system.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.