The addition of vermiculite reduced antibiotic resistance genes during composting: Novel insights based on reducing host bacteria abundance and inhibiting plasmid-mediated conjugative transfer.
Yifan Sun, Jian Sun, Zixuan Zhao, Zixuan Gao, Honghong Guo, Tao Hu, Lu An, Jie Gu, Xiaojuan Wang
{"title":"The addition of vermiculite reduced antibiotic resistance genes during composting: Novel insights based on reducing host bacteria abundance and inhibiting plasmid-mediated conjugative transfer.","authors":"Yifan Sun, Jian Sun, Zixuan Zhao, Zixuan Gao, Honghong Guo, Tao Hu, Lu An, Jie Gu, Xiaojuan Wang","doi":"10.1016/j.jenvman.2024.123719","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance genes (ARGs) are prevalent in raw materials used for composting. The utilization of eco-friendly materials for the removal of ARGs is regarded as an economically effective method. Therefore, this study focused on the impact of incorporating different proportions of vermiculite (0% (CK), 5% (T1), and 10% (T2)) on the dynamics of ARGs during composting. In comparison to CK, the total absolute abundances of ARGs decreased by 14.17% and 31.52% in T1 and T2, respectively. Potential human pathogenic bacteria, including Acinetobacter, Corynebacterium, and Lactobacillus, were identified as core hosts of ARGs. The addition of vermiculite effectively inhibited proliferation of ARG hosts by extending the thermophilic phase of composting and reducing bioavailable copper concentrations. Incorporation of vermiculite decreased the absolute abundances of transposons and integrons, such as intI1 and Tn916/1545, which were significantly positively correlated with most ARGs. Adding vermiculite simultaneously enhanced the removal of common environmental plasmids (e.g., Inc.P, Inc.W), and downregulated expression of genes associated with bacterial conjugation and plasmid replication (e.g., trBbp, trfAp), thereby inhibiting the dissemination of ARGs. Taken together, this study provides novel insights that the incorporation of vermiculite can effectively enhance the reduction rate of ARGs during composting by reducing the host of ARGs and inhibiting their dissemination.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"373 ","pages":"123719"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123719","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance genes (ARGs) are prevalent in raw materials used for composting. The utilization of eco-friendly materials for the removal of ARGs is regarded as an economically effective method. Therefore, this study focused on the impact of incorporating different proportions of vermiculite (0% (CK), 5% (T1), and 10% (T2)) on the dynamics of ARGs during composting. In comparison to CK, the total absolute abundances of ARGs decreased by 14.17% and 31.52% in T1 and T2, respectively. Potential human pathogenic bacteria, including Acinetobacter, Corynebacterium, and Lactobacillus, were identified as core hosts of ARGs. The addition of vermiculite effectively inhibited proliferation of ARG hosts by extending the thermophilic phase of composting and reducing bioavailable copper concentrations. Incorporation of vermiculite decreased the absolute abundances of transposons and integrons, such as intI1 and Tn916/1545, which were significantly positively correlated with most ARGs. Adding vermiculite simultaneously enhanced the removal of common environmental plasmids (e.g., Inc.P, Inc.W), and downregulated expression of genes associated with bacterial conjugation and plasmid replication (e.g., trBbp, trfAp), thereby inhibiting the dissemination of ARGs. Taken together, this study provides novel insights that the incorporation of vermiculite can effectively enhance the reduction rate of ARGs during composting by reducing the host of ARGs and inhibiting their dissemination.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.