Self-Cross-Linked Collagen Sponge from the Alosa sapidissima Scale for Hemostasis and Wound Healing Applications.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2024-12-16 DOI:10.1021/acs.biomac.4c01211
Xiaoyun Li, Yue Xu, Zijun Zhou, Mingliang Tang, Jinjia Cui, Wenjing Han, Jingyi Li, Jing Dai, Xiaoyi Ren, Huihui Jiang, Yanzhen Yu, Qinghua Liu, Hongmei Tang, Miao Xiao
{"title":"Self-Cross-Linked Collagen Sponge from the <i>Alosa sapidissima</i> Scale for Hemostasis and Wound Healing Applications.","authors":"Xiaoyun Li, Yue Xu, Zijun Zhou, Mingliang Tang, Jinjia Cui, Wenjing Han, Jingyi Li, Jing Dai, Xiaoyi Ren, Huihui Jiang, Yanzhen Yu, Qinghua Liu, Hongmei Tang, Miao Xiao","doi":"10.1021/acs.biomac.4c01211","DOIUrl":null,"url":null,"abstract":"<p><p>Type I collagen, a crucial component maintaining the structural integrity and physiological function of various tissues, is widely regarded as one of the most suitable biomaterials for healthcare applications. In this study, shad scales, used for treating ulcers, scalds, and burns in traditional Chinese medicine, were exploited for type I collagen extraction. After self-assembly into hydrogels, the extracted collagen was subsequently freeze-dried to form collagen sponges. The collagen sponge promoted rapid hemostasis, neovascularization, and immune regulation. Additionally, it accelerated the formation of granulation tissue, re-epithelialization, and collagen remodeling at the wound site in full-thickness skin wound rat models. Consequently, the shad scale collagen sponge holds great promise for the treatment of chronic wounds and skin regeneration. Notably, the shad was sourced from sustainably recirculating aquaculture systems (RAS) farms that adhere to the Traceable Management of Animal Products Safety, ensuring that the derived collagen possesses potential in the medical apparatus market.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01211","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Type I collagen, a crucial component maintaining the structural integrity and physiological function of various tissues, is widely regarded as one of the most suitable biomaterials for healthcare applications. In this study, shad scales, used for treating ulcers, scalds, and burns in traditional Chinese medicine, were exploited for type I collagen extraction. After self-assembly into hydrogels, the extracted collagen was subsequently freeze-dried to form collagen sponges. The collagen sponge promoted rapid hemostasis, neovascularization, and immune regulation. Additionally, it accelerated the formation of granulation tissue, re-epithelialization, and collagen remodeling at the wound site in full-thickness skin wound rat models. Consequently, the shad scale collagen sponge holds great promise for the treatment of chronic wounds and skin regeneration. Notably, the shad was sourced from sustainably recirculating aquaculture systems (RAS) farms that adhere to the Traceable Management of Animal Products Safety, ensuring that the derived collagen possesses potential in the medical apparatus market.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
I 型胶原蛋白是维持各种组织结构完整性和生理功能的重要成分,被广泛认为是最适合医疗保健应用的生物材料之一。本研究利用传统中药中用于治疗溃疡、烫伤和烧伤的鲥鱼鳞片提取 I 型胶原蛋白。提取的胶原蛋白在自组装成水凝胶后,经冷冻干燥形成胶原蛋白海绵。胶原蛋白海绵可促进快速止血、新生血管形成和免疫调节。此外,在大鼠全厚皮肤伤口模型中,它还能加速伤口部位肉芽组织的形成、上皮再形成和胶原重塑。因此,鲥鱼鳞胶原蛋白海绵在治疗慢性伤口和皮肤再生方面大有可为。值得注意的是,鲥鱼来自可持续的循环水养殖系统(RAS)养殖场,这些养殖场遵守动物产品安全可追溯管理规定,确保了提取的胶原蛋白在医疗器械市场上的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Tuning Star Polymer Architecture to Tailor Secondary Structures and Mechanical Properties of Diblock Polypeptide Hydrogels for Direct Ink Writing. Enhancing the Properties of Latex-Based Coatings with Carboxylated Cellulose Nanocrystals. Investigating the Influence of Hydrogel and Oleogel Ratios on Physico Chemical Characteristics, Microstructure, Rheology, and Texture of a Food Grade Bigel. Gold Nanoparticles Decorated with HPLC6-Derived Peptides as a Platform for Ice Recrystallization Inhibition. Toward a Complete Elucidation of the Primary Structure-Activity in Pentaerythritol-Based One-Component Ionizable Amphiphilic Janus Dendrimers for In Vivo Delivery of Luc-mRNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1