Nanogrooved Elastomeric Diaphragm Arrays for Assessment of Cardiomyocytes under Synergistic Effects of Circular Mechanical Stimuli and Electrical Conductivity to Enhance Intercellular Communication.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-12-16 DOI:10.1021/acsbiomaterials.4c01298
Abdullah-Bin Siddique, Keith A Williams, Nathan S Swami
{"title":"Nanogrooved Elastomeric Diaphragm Arrays for Assessment of Cardiomyocytes under Synergistic Effects of Circular Mechanical Stimuli and Electrical Conductivity to Enhance Intercellular Communication.","authors":"Abdullah-Bin Siddique, Keith A Williams, Nathan S Swami","doi":"10.1021/acsbiomaterials.4c01298","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases remain the leading cause of mortality, necessitating advancements in <i>in vitro</i> cardiac tissue engineering platforms for improved disease modeling, drug screening, and regenerative therapies. The chief challenge to recapitulating the beating behavior of cardiomyocytes is creation of the circular stress profile experienced by hollow organs in the natural heart due to filling pressure and integrated strategies for intercellular communication to promote cell-to-cell connections. We present a platform featuring addressable arrays of nanogrooved polydimethylsiloxane (PDMS) diaphragms for cell alignment and circular mechanical stimulation, with embedded silver nanowires (AgNWs) for electrical cues, so that cardiomyocyte functionality can be assessed under these synergistic influences. Central to our innovation is a two-layer PDMS diaphragm design that electrically isolates the liquid metal (EGaIn) strain sensor in the bottom layer to enable detection and control of mechanical stimulation from conductive portions of embedded AgNWs in the top layer that supports cardiomyocyte culture and communication. In this manner, through localized detection and control of the circular mechanical stimulation, the essential role of multiaxial stretching on cardiomyocyte function is elucidated based on their contractility, sarcomere length, and connexin-43 expression. This <i>in vitro</i> platform can potentially transform cardiac tissue engineering, drug screening, and precision medicine approaches.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01298","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases remain the leading cause of mortality, necessitating advancements in in vitro cardiac tissue engineering platforms for improved disease modeling, drug screening, and regenerative therapies. The chief challenge to recapitulating the beating behavior of cardiomyocytes is creation of the circular stress profile experienced by hollow organs in the natural heart due to filling pressure and integrated strategies for intercellular communication to promote cell-to-cell connections. We present a platform featuring addressable arrays of nanogrooved polydimethylsiloxane (PDMS) diaphragms for cell alignment and circular mechanical stimulation, with embedded silver nanowires (AgNWs) for electrical cues, so that cardiomyocyte functionality can be assessed under these synergistic influences. Central to our innovation is a two-layer PDMS diaphragm design that electrically isolates the liquid metal (EGaIn) strain sensor in the bottom layer to enable detection and control of mechanical stimulation from conductive portions of embedded AgNWs in the top layer that supports cardiomyocyte culture and communication. In this manner, through localized detection and control of the circular mechanical stimulation, the essential role of multiaxial stretching on cardiomyocyte function is elucidated based on their contractility, sarcomere length, and connexin-43 expression. This in vitro platform can potentially transform cardiac tissue engineering, drug screening, and precision medicine approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米凹槽弹性膜片阵列用于评估心肌细胞在环形机械刺激和电导率协同作用下的情况,以增强细胞间的交流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Fabrication of Oro-Dispersible Sodium Valproate-Loaded Nanofibrous Patches for Immediate Epileptic Innervation. Guiding Oligodendrocyte Progenitor Cell Maturation Using Electrospun Fiber Cues in a 3D Hyaluronic Acid Hydrogel Culture System. Phycocyanin/Hyaluronic Acid Microneedle Patches Loaded with Celastrol Nanoparticles for Synergistic Treatment of Diabetic Nephropathy. Sacrificial Templating for Accelerating Clinical Translation of Engineered Organs. Control of Tissue Strain Is Essential for Enhanced Dermal Innervation in the Three-Dimensional Skin Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1