Converting the CHF3 Greenhouse Gas into Nanometer-Thick LiF Coating for High-Voltage Cathode Li-ion Batteries Materials.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-12-16 DOI:10.1002/cssc.202402057
Aleš Štefančič, Carlos Antonio Fernandes Vaz, Dominika Baster, Elisabeth Müller, Mario El Kazzi
{"title":"Converting the CHF3 Greenhouse Gas into Nanometer-Thick LiF Coating for High-Voltage Cathode Li-ion Batteries Materials.","authors":"Aleš Štefančič, Carlos Antonio Fernandes Vaz, Dominika Baster, Elisabeth Müller, Mario El Kazzi","doi":"10.1002/cssc.202402057","DOIUrl":null,"url":null,"abstract":"<p><p>Solving the surface (electro-)chemical instability and the fading behavior of high voltage cathode materials cycled above 4.3 V vs Li+/Li remains a major challenge for the next generation of high energy density Li-ion batteries. Here, we present a facile, environmentally friendly, cost effective and scalable method to address this problem by uniformly fluorinating the surface of cathode materials with a mild fluorinating agent (CHF3) using a gas flow-type reactor. CHF3, well known as a potent greenhouse gas, is successfully transformed into a stable ~2 nm LiF homogenous layer by converting the adventitious Li2CO3 layer covering the surface of the vast majority of layered-oxide cathode materials. The fluorination mechanism and the interface stability of the LiF coating layer is systematically studied on LiNi0.8Co0.15Al0.05O2 using synchrotron surface spectroscopy techniques, operando XRD and TEM. In addition, we demonstrate improved electrochemical cycling performance of the LiF coated LiNi0.8Co0.15Al0.05O2 when cycled up to 4.5 V where the impedance and overpotential decrease by 30% and 100 mV respectively after 100 cycles, with a capacity retention better than 94% and improved rate performance at high current density. Furthermore, the universality of the fluorination approach is validated further on Ni-rich LiNi0.85Co0.1Mn0.05O2 cathode material cycled up to 4.8 V.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402057"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402057","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solving the surface (electro-)chemical instability and the fading behavior of high voltage cathode materials cycled above 4.3 V vs Li+/Li remains a major challenge for the next generation of high energy density Li-ion batteries. Here, we present a facile, environmentally friendly, cost effective and scalable method to address this problem by uniformly fluorinating the surface of cathode materials with a mild fluorinating agent (CHF3) using a gas flow-type reactor. CHF3, well known as a potent greenhouse gas, is successfully transformed into a stable ~2 nm LiF homogenous layer by converting the adventitious Li2CO3 layer covering the surface of the vast majority of layered-oxide cathode materials. The fluorination mechanism and the interface stability of the LiF coating layer is systematically studied on LiNi0.8Co0.15Al0.05O2 using synchrotron surface spectroscopy techniques, operando XRD and TEM. In addition, we demonstrate improved electrochemical cycling performance of the LiF coated LiNi0.8Co0.15Al0.05O2 when cycled up to 4.5 V where the impedance and overpotential decrease by 30% and 100 mV respectively after 100 cycles, with a capacity retention better than 94% and improved rate performance at high current density. Furthermore, the universality of the fluorination approach is validated further on Ni-rich LiNi0.85Co0.1Mn0.05O2 cathode material cycled up to 4.8 V.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对于下一代高能量密度锂离子电池来说,解决高压正极材料在 4.3 V 以上循环对 Li+/Li 的表面(电)化学不稳定性和衰减行为仍然是一个重大挑战。在此,我们提出了一种简便、环保、成本效益高且可扩展的方法来解决这一问题,即使用气流式反应器,用温和的氟化剂(CHF3)对阴极材料表面进行均匀氟化。众所周知,CHF3 是一种强效温室气体,通过转化覆盖在绝大多数层状氧化物阴极材料表面的外生 Li2CO3 层,成功地将其转化为稳定的 ~2 nm LiF 均质层。我们利用同步辐射表面光谱技术、操作XRD和TEM对LiNi0.8Co0.15Al0.05O2上的氟化机理和LiF涂层的界面稳定性进行了系统研究。此外,我们还证明了 LiF 涂层 LiNi0.8Co0.15Al0.05O2 在 4.5 V 以下循环时电化学循环性能的改善,100 次循环后阻抗和过电位分别降低 30% 和 100 mV,容量保持率优于 94%,高电流密度下的速率性能也有所改善。此外,在富镍 LiNi0.85Co0.1Mn0.05O2 阴极材料上循环至 4.8 V,进一步验证了氟化方法的普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Converting the CHF3 Greenhouse Gas into Nanometer-Thick LiF Coating for High-Voltage Cathode Li-ion Batteries Materials. Sulfur-bridged iron and molybdenum Catalysts for Electrocatalytic Ammonia Synthesis. Improving Redox Activity of Colloidal Plasmonic-Magnetic Nanocrystals by Chemical State Modulation. Development of Aromatic Organic Materials for High-performance Lithium-ion Batteries: Strategies, Advances and Future Perspectives. Nitrate Electroreduction to Ammonia over Copper-based Catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1