Unilateral antibacterial Janus hydrogel hemostatic dressing prepared by the dragging effect of a brush.

IF 5.4 2区 医学 Q1 BIOPHYSICS Colloids and Surfaces B: Biointerfaces Pub Date : 2024-12-10 DOI:10.1016/j.colsurfb.2024.114453
Siqi Chen, Yanyan Zheng, Yan Fang, Yunxiang Weng, Haiqing Liu, Qinhui Chen
{"title":"Unilateral antibacterial Janus hydrogel hemostatic dressing prepared by the dragging effect of a brush.","authors":"Siqi Chen, Yanyan Zheng, Yan Fang, Yunxiang Weng, Haiqing Liu, Qinhui Chen","doi":"10.1016/j.colsurfb.2024.114453","DOIUrl":null,"url":null,"abstract":"<p><p>Hemostasis and subsequent anti-inflammatory measures are essential for wound healing in the human body following trauma or surgical procedures. Here, we try to use the dragging effect of a brush to prepare a Janus hydrogel with the least amount of bacteriostatic agent. The synthesized suspension of polyvinylbenzene-silica@quaternary ammonium salt (PDVB-SiO<sub>2</sub>@NR<sub>4</sub><sup>+</sup>) Janus particles (JNPs) was selected as ink and brush coated onto one side of a polyacrylic acid (PAA) hydrogel, resulting in Janus hydrogel (JNPs≌PAA). The anisotropic chemical composition, wetting properties, adhesion capabilities, and the obtained hemostatic performance of the Janus hydrogel were studied thoroughly. The hydrophilic PAA side promoted tissue adhesion, while the hydrophobic JNPs side exhibited antibacterial effects. The Janus hydrogel presented perfect hemostatic effect in vivo, owing to the procoagulant effect of the adhesive layer, negative charges, and blood-blocking properties of the hydrophobic layer. The presence of quaternary ammonium groups in the Janus hydrogel imparted strong antibacterial activity against E. coli and S. aureus. Furthermore, the Janus hydrogel showed a low hemolysis rate and high cell safety. This multifunctional hydrogel material holds great promise for wound treatment and expands the applications of hydrogel materials in the biomedical field.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"247 ","pages":"114453"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114453","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Hemostasis and subsequent anti-inflammatory measures are essential for wound healing in the human body following trauma or surgical procedures. Here, we try to use the dragging effect of a brush to prepare a Janus hydrogel with the least amount of bacteriostatic agent. The synthesized suspension of polyvinylbenzene-silica@quaternary ammonium salt (PDVB-SiO2@NR4+) Janus particles (JNPs) was selected as ink and brush coated onto one side of a polyacrylic acid (PAA) hydrogel, resulting in Janus hydrogel (JNPs≌PAA). The anisotropic chemical composition, wetting properties, adhesion capabilities, and the obtained hemostatic performance of the Janus hydrogel were studied thoroughly. The hydrophilic PAA side promoted tissue adhesion, while the hydrophobic JNPs side exhibited antibacterial effects. The Janus hydrogel presented perfect hemostatic effect in vivo, owing to the procoagulant effect of the adhesive layer, negative charges, and blood-blocking properties of the hydrophobic layer. The presence of quaternary ammonium groups in the Janus hydrogel imparted strong antibacterial activity against E. coli and S. aureus. Furthermore, the Janus hydrogel showed a low hemolysis rate and high cell safety. This multifunctional hydrogel material holds great promise for wound treatment and expands the applications of hydrogel materials in the biomedical field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用刷子的拖拽效应制备的单侧抗菌 Janus 水凝胶止血敷料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
期刊最新文献
A novel multifunctional PEEK internal fixation plate regulated by Gentamicin/chitosan coating. Adsorption of bile salts onto crystalline ritonavir particles under simulated gastrointestinal conditions. Advances in the transport of oral nanoparticles in gastrointestinal tract. Albendazole nanosuspension coated granules for the rapid localized release and treatment of colorectal cancer. Co-delivery of SN38 and MEF2D-siRNA via tLyp-1-modified liposomes reverses PD-L1 expression induced by STING activation in hepatocellular carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1