Effectiveness of ultrasound (US) and slightly acidic electrolyzed water (SAEW) treatments for removing Listeria monocytogenes biofilms.

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI:10.1016/j.ultsonch.2024.107190
Hongrui Ren, Yu Quan, Shaokang Liu, Jianxiong Hao
{"title":"Effectiveness of ultrasound (US) and slightly acidic electrolyzed water (SAEW) treatments for removing Listeria monocytogenes biofilms.","authors":"Hongrui Ren, Yu Quan, Shaokang Liu, Jianxiong Hao","doi":"10.1016/j.ultsonch.2024.107190","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms can persist in food industry environments leading to repeated cross-contamination, thus threatening human health. Slightly acid electrolyzed water (SAEW) and ultrasound have emerged as environmentally-friendly antimicrobial agents. However, their bactericidal efficacy is not high when used alone. In the present study, the effect of ultrasound combined with SAEW on removing Listeria monocytogenes biofilms from a glass surface was evaluated. Listeria monocytogenes biofilms were treated by immersion in sterilized deionized water (control treatment), immersion in sterilized deionized water combined with ultrasound (US treatment), immersion in SAEW (SAEW treatment), immersion in SAEW combined with ultrasound treatment (SAEW + US treatment), immersion in SAEW followed by immersion in sterilized deionized water combined with ultrasound (SAEW - US treatment), and immersion in sterilized deionized water combined with ultrasound followed by immersion in SAEW (US - SAEW treatment). The results showed that treating biofilms by US - SAEW treatment led to the lowest number of Listeria monocytogenes, the lowest amount of biofilm remaining on the glass slide were visualized by crystal violet staining and scanning electron microscope, and a minimal content of extracellular polymeric substances. Overall, the highest biofilm removal efficacy was observed for the US - SAEW treatment.</p>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"112 ","pages":"107190"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11713715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ultsonch.2024.107190","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilms can persist in food industry environments leading to repeated cross-contamination, thus threatening human health. Slightly acid electrolyzed water (SAEW) and ultrasound have emerged as environmentally-friendly antimicrobial agents. However, their bactericidal efficacy is not high when used alone. In the present study, the effect of ultrasound combined with SAEW on removing Listeria monocytogenes biofilms from a glass surface was evaluated. Listeria monocytogenes biofilms were treated by immersion in sterilized deionized water (control treatment), immersion in sterilized deionized water combined with ultrasound (US treatment), immersion in SAEW (SAEW treatment), immersion in SAEW combined with ultrasound treatment (SAEW + US treatment), immersion in SAEW followed by immersion in sterilized deionized water combined with ultrasound (SAEW - US treatment), and immersion in sterilized deionized water combined with ultrasound followed by immersion in SAEW (US - SAEW treatment). The results showed that treating biofilms by US - SAEW treatment led to the lowest number of Listeria monocytogenes, the lowest amount of biofilm remaining on the glass slide were visualized by crystal violet staining and scanning electron microscope, and a minimal content of extracellular polymeric substances. Overall, the highest biofilm removal efficacy was observed for the US - SAEW treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声波(US)和微酸性电解水(SAEW)处理去除李斯特菌生物膜的效果。
生物膜可在食品工业环境中持续存在,导致反复交叉污染,从而威胁人体健康。微酸电解水(SAEW)和超声波已成为环保抗菌剂。但单独使用时,其杀菌效果不高。在本研究中,研究了超声联合超声超声对玻璃表面单核细胞增生李斯特菌生物膜的去除效果。单核增生李斯特菌生物膜的处理方法为:灭菌去离子水浸泡(对照处理)、灭菌去离子水联合超声浸泡(US处理)、SAEW浸泡(SAEW处理)、SAEW浸泡联合超声处理(SAEW + US处理)、SAEW浸泡后再浸泡灭菌去离子水联合超声(SAEW - US处理)。超声联合灭菌去离子水浸泡,再浸泡在SAEW中(US - SAEW处理)。结果表明,经US - SAEW处理的生物膜中单核增生李斯特菌数量最少,结晶紫染色和扫描电镜观察玻片上残留的生物膜数量最少,胞外高分子物质含量最少。总体而言,观察到US - SAEW处理的生物膜去除效果最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
Ultrasound-assisted enhancement of bioactive compounds in hawthorn vinegar: A functional approach to anticancer and antidiabetic effects. Innovative strategy for full-scale polar components explicition and ultrasonic-assisted optimization of Astragalus membranaceus flower. Utilizing ultrasound for the extraction of polysaccharides from the tuber of Typhonium giganteum Engl.: Extraction conditions, structural characterization and bioactivities. Functional nanocrystal as effective contrast agents for dual-mode imaging: Live-cell sonoluminescence and contrast-enhanced echography. Process, dynamics and bioeffects of acoustic droplet vaporization induced by dual-frequency focused ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1