A new phthalide derivative from the mushroom Cyclocybe cf. erebia culture filtrate affects the phase of circadian rhythms in mouse fibroblasts.

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioscience, Biotechnology, and Biochemistry Pub Date : 2024-12-05 DOI:10.1093/bbb/zbae187
Yusei Kobayashi, Yuanyuan Lu, Nan Li, Naoki Endo, Kozue Sotome, Kotomi Ueno, Yu Tahara, Atsushi Ishihara
{"title":"A new phthalide derivative from the mushroom Cyclocybe cf. erebia culture filtrate affects the phase of circadian rhythms in mouse fibroblasts.","authors":"Yusei Kobayashi, Yuanyuan Lu, Nan Li, Naoki Endo, Kozue Sotome, Kotomi Ueno, Yu Tahara, Atsushi Ishihara","doi":"10.1093/bbb/zbae187","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythms are biological systems that provide approximately 24-hour cycles for the behavior and physiological functions of organisms. As diverse modern lifestyles often cause disturbances in circadian rhythms, new approaches to their regulation are required. Therefore, new compounds that affect circadian rhythms have been explored in edible mushrooms. The extract from the culture filtrate of Cyclocybe cf. erebia showed activity that advanced the circadian rhythm in a bioassay with mouse fibroblasts expressing the LUCIFERASE protein under the control of the Period2 promoter. Bioassay-guided fractionation of the extract resulted in the isolation of the compound. Spectroscopic analyses identified the compound as a phthalide derivative, and the compound was named cyclocybelide. Treatment of mouse fibroblasts with the compound shifted the circadian rhythm forward, irrespective of the timing of treatment. In addition, some phthalide derivatives with hydroxy and methoxy groups showed similar effects on circadian rhythms.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae187","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Circadian rhythms are biological systems that provide approximately 24-hour cycles for the behavior and physiological functions of organisms. As diverse modern lifestyles often cause disturbances in circadian rhythms, new approaches to their regulation are required. Therefore, new compounds that affect circadian rhythms have been explored in edible mushrooms. The extract from the culture filtrate of Cyclocybe cf. erebia showed activity that advanced the circadian rhythm in a bioassay with mouse fibroblasts expressing the LUCIFERASE protein under the control of the Period2 promoter. Bioassay-guided fractionation of the extract resulted in the isolation of the compound. Spectroscopic analyses identified the compound as a phthalide derivative, and the compound was named cyclocybelide. Treatment of mouse fibroblasts with the compound shifted the circadian rhythm forward, irrespective of the timing of treatment. In addition, some phthalide derivatives with hydroxy and methoxy groups showed similar effects on circadian rhythms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种来自蘑菇 Cyclocybe cf. erebia 培养滤液的新邻苯二甲酸酯衍生物会影响小鼠成纤维细胞的昼夜节律相位。
昼夜节律是一种生物系统,为生物的行为和生理功能提供大约 24 小时的周期。由于多种多样的现代生活方式经常导致昼夜节律紊乱,因此需要新的方法来调节昼夜节律。因此,人们在食用菌中探索影响昼夜节律的新化合物。在对受 Period2 启动子控制的表达 LUCIFERASE 蛋白的小鼠成纤维细胞进行的生物测定中,从 Cyclocybe cf. erebia 的培养滤液中提取的提取物显示出了推进昼夜节律的活性。生物测定指导下对提取物进行分馏,分离出了该化合物。通过光谱分析,确定该化合物为邻苯二甲酸酯衍生物,并将其命名为环己内酯。用这种化合物处理小鼠成纤维细胞会使昼夜节律前移,与处理时间无关。此外,一些带有羟基和甲氧基的邻苯二甲酸酯衍生物也对昼夜节律产生了类似的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioscience, Biotechnology, and Biochemistry
Bioscience, Biotechnology, and Biochemistry 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
183
审稿时长
1 months
期刊介绍: Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).
期刊最新文献
Prevalence of suspected anemia in Japanese young children determined using non-invasive hemoglobin measurements: an observational study. Transcriptomic analysis reveals three important carbohydrate-active enzymes contributing to starch degradation of oleaginous yeast Lipomyces starkeyi. Elucidation of physiological functions of sphingolipid-related molecules by chemical approaches. A novel scaffold for biofilm formation by soil microbes using iron-cross-linked alginate gels. Screening of novel lactic acid bacteria with high induction of IgA production, dendritic cell activation, and IL-12 production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1