Dose optimization of extended collimators in boron neutron capture therapy.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-12-20 DOI:10.1088/2057-1976/ad9c7f
Yadi Zhu, Chao Lian, Xiang Ji, Xiaoxiang Zhang, Chunjing Li, Yunqing Bai, Jun Gao
{"title":"Dose optimization of extended collimators in boron neutron capture therapy.","authors":"Yadi Zhu, Chao Lian, Xiang Ji, Xiaoxiang Zhang, Chunjing Li, Yunqing Bai, Jun Gao","doi":"10.1088/2057-1976/ad9c7f","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose the design of extending collimators aimed at reducing the radiation dose received by patients with normal tissues and protecting organs at risk in Boron Neutron Capture Therapy (BNCT). Three types of extended collimators are studied: Type 1, which is a traditional design; Type 2, which is built upon Type 1 by incorporating additional polyethylene material containing lithium fluoride (PE(LiF)); Type 3, which adds lead (Pb) to Type 1. We evaluated the dose distribution characteristics of the above-extended collimators using Monte Carlo methods simulations under different configurations: in air, in a homogeneous phantom, and a humanoid phantom model. Firstly, the neutron and gamma-ray fluxes at the collimator outlet of the three designs showed no significant changes, thus it can be expected that their therapeutic effects on tumors will be similar. Then, the dose distribution outside the irradiation field was studied. The results showed that, compared with Type 1, Type 2 has a maximum reduction of 57.14% in neutron leakage dose, and Type 3 has a maximum reduction of 21.88% in gamma-ray leakage dose. This will help to reduce the radiation dose to the local skin. Finally, the doses of different organs were simulated. The results showed that the neutron dose of Type 2 was relatively low, especially for the skin, thyroid, spinal cord, and left lung, with the neutron dose reduced by approximately 20.34%, 16.18%, 26.05%, and 18.91% respectively compared to Type 1. Type 3 collimator benefits in reducing gamma-ray dose for the thyroid, esophagus, and left lung organs, with gamma-ray dose reductions of around 10.81%, 9.45%, and 10.42% respectively. This indicates that attaching PE(LiF) or Pb materials to a standard collimator can suppress the dose distribution of patient organs, which can provide valuable insights for the design of extended collimators in BNCT.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad9c7f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose the design of extending collimators aimed at reducing the radiation dose received by patients with normal tissues and protecting organs at risk in Boron Neutron Capture Therapy (BNCT). Three types of extended collimators are studied: Type 1, which is a traditional design; Type 2, which is built upon Type 1 by incorporating additional polyethylene material containing lithium fluoride (PE(LiF)); Type 3, which adds lead (Pb) to Type 1. We evaluated the dose distribution characteristics of the above-extended collimators using Monte Carlo methods simulations under different configurations: in air, in a homogeneous phantom, and a humanoid phantom model. Firstly, the neutron and gamma-ray fluxes at the collimator outlet of the three designs showed no significant changes, thus it can be expected that their therapeutic effects on tumors will be similar. Then, the dose distribution outside the irradiation field was studied. The results showed that, compared with Type 1, Type 2 has a maximum reduction of 57.14% in neutron leakage dose, and Type 3 has a maximum reduction of 21.88% in gamma-ray leakage dose. This will help to reduce the radiation dose to the local skin. Finally, the doses of different organs were simulated. The results showed that the neutron dose of Type 2 was relatively low, especially for the skin, thyroid, spinal cord, and left lung, with the neutron dose reduced by approximately 20.34%, 16.18%, 26.05%, and 18.91% respectively compared to Type 1. Type 3 collimator benefits in reducing gamma-ray dose for the thyroid, esophagus, and left lung organs, with gamma-ray dose reductions of around 10.81%, 9.45%, and 10.42% respectively. This indicates that attaching PE(LiF) or Pb materials to a standard collimator can suppress the dose distribution of patient organs, which can provide valuable insights for the design of extended collimators in BNCT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展准直器在硼中子俘获治疗中的剂量优化。
在本文中,我们提出了扩展准直器的设计方案,旨在减少正常组织患者接受的辐射剂量,并保护硼中子俘获疗法(BNCT)中的危险器官。研究了三种类型的扩展准直器:类型 1 是一种传统设计;类型 2 是在类型 1 的基础上增加了含有氟化锂(PE(LiF))的聚乙烯材料;类型 3 是在类型 1 的基础上增加了铅(Pb)。我们使用蒙特卡洛方法模拟评估了上述扩展型准直器在不同配置下的剂量分布特性:空气中、均质人体模型和类人人体模型。首先,三种设计的准直器出口处的中子和伽马射线通量没有明显变化,因此可以预计它们对肿瘤的治疗效果相似。然后,研究了辐照场外的剂量分布。结果显示,与 1 型相比,2 型的中子泄漏剂量最大减少了 57.14%,3 型的伽马射线泄漏剂量最大减少了 21.88%。这将有助于减少对局部皮肤的辐射剂量。最后,模拟了不同器官的剂量。结果显示,2 型的中子剂量相对较低,尤其是皮肤、甲状腺、脊髓和左肺,与 1 型相比,中子剂量分别减少了约 20.34%、16.18%、26.05% 和 18.91%。3 型准直器有利于减少甲状腺、食道和右肺器官的伽马射线剂量,伽马射线剂量分别减少了约 10.81%、9.45% 和 10.42%。这表明,在标准准直器上附加 PE(LiF)或 Pb 材料可以抑制患者器官的剂量分布,从而为 BNCT 中扩展准直器的设计提供有价值的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Biological cell response to electric field: a review of equivalent circuit models and future challenges. A novel hollow-core antiresonant fiber-based biosensor for blood component detection in the THz regime. Simulations of the potential for diffraction enhanced imaging at 8 kev using polycapillary optics. Determining event-related desynchronization onset latency of foot dorsiflexion in people with multiple sclerosis using the cluster depth tests. Automated detection of traumatic bleeding in CT images using 3D U-Net# and multi-organ segmentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1