Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy.

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Biomedical optics express Pub Date : 2024-11-21 eCollection Date: 2024-12-01 DOI:10.1364/BOE.538473
Somayyeh Soltanian-Zadeh, Katherine Kovalick, Samira Aghayee, Donald T Miller, Zhuolin Liu, Daniel X Hammer, Sina Farsiu
{"title":"Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy.","authors":"Somayyeh Soltanian-Zadeh, Katherine Kovalick, Samira Aghayee, Donald T Miller, Zhuolin Liu, Daniel X Hammer, Sina Farsiu","doi":"10.1364/BOE.538473","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 12","pages":"6922-6939"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11640571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.538473","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视网膜色素上皮(RPE)细胞对视网膜的正常功能至关重要。这些细胞的形态缺陷与多种视网膜神经退行性疾病有关。自适应光学-光学相干断层扫描(AO-OCT)具有细胞分辨率和深度切片功能,可在体内观察单个 RPE 细胞。要快速、经济、客观地量化 RPE 镶嵌的结构特性,就必须开发一种自动细胞分割算法。本文介绍了一种基于深度学习的方法,该方法通过部分注释训练来检测 AO-OCT 图像中的 RPE 细胞,其准确性优于人类表现。我们在网上提供了代码、成像数据集和人工专家标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
期刊最新文献
Frequency shifting of light via multiple ultrasound waves in scattering media. Visually relevant on-bench through-focus analysis of intraocular lenses. In vivo dual-plane 3-photon microscopy: spanning the depth of the mouse neocortex. Inverted meniscus IOLs reduce image shifts in the periphery compared to biconvex IOLs. Near-infrared diffuse optical characterization of human thyroid using ultrasound-guided hybrid time-domain and diffuse correlation spectroscopies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1