Piceatannol-3'-O-β-D-glucopyranoside inhibits neuroexcitotoxicity and ferroptosis through NMDAR/NRF2/BACH1/ACSL4 pathway in acute ischemic stroke.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2025-02-01 Epub Date: 2024-12-13 DOI:10.1016/j.freeradbiomed.2024.12.029
Genhao Fan, Jia Liu, Menglin Liu, Yuhong Huang
{"title":"Piceatannol-3'-O-β-D-glucopyranoside inhibits neuroexcitotoxicity and ferroptosis through NMDAR/NRF2/BACH1/ACSL4 pathway in acute ischemic stroke.","authors":"Genhao Fan, Jia Liu, Menglin Liu, Yuhong Huang","doi":"10.1016/j.freeradbiomed.2024.12.029","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuronal protection is a well-established method of acute ischemic stroke (AIS) treatment. The pharmacodynamic effect of Piceatannol-3'-O-β-D-glucopyranoside (Chinese name: Hartigan, QZZG) on AIS has been reported, but the molecular mechanism of this effect remains unknown.</p><p><strong>Purpose: </strong>The purpose of this study is to elucidate the pharmacodynamic effects and mechanisms of QZZG in the treatment of AIS.</p><p><strong>Methods: </strong>A combined network pharmacology and metabolomics approach was used to predict the key targets and pathways of QZZG in the treatment of AIS and to elucidate the mechanism of QZZG through experimental validation.</p><p><strong>Results: </strong>In this study, QZZG improved histopathologic features and reduced infarct volume and neurologic deficit scores. Integrated network pharmacology and metabolomics revealed that QZZG may protect neurons by regulating glutamate and its receptors, and that glutamate is closely related to NMDAR1, NRF2, and Caspase-3. Pathway analysis results suggested that NMDAR-mediated Ca<sup>2+</sup> inward flow is one of the critical pathways. In terms of neuroexcitotoxicity QZZG inhibited glutamate content, reduced Ca<sup>2+</sup> inward flow, protected mitochondrial function, and reduced ROS, as well as being able to effectively inhibit the expression of NMDAR1, Caspase-3, Bax, and promote the expression of Bcl-2, NMDAR2A. In terms of ferroptosis QZZG promoted NRF2, HO-1, GPX4 and nuclear-NRF2, inhibited the expression of BACH1 and ACSL4, and suppressed Fe<sup>2+</sup> accumulation and lipid peroxidation. Silencing of BACH1 resulted in elevated expression of NRF2 and decreased expression of ACSL4, which inhibited the sensitivity of neurons to ferroptosis. QZZG was able to further increase NRF2 expression under conditions of silencing BACH1. QZZG induced NRF2 and inhibited BACH1, ACSL4 was inhibited by ML385, and inhibition of NRF2 induced the expression of BACH1 and ACSL4, QZZG protects neurons in an NRF2-dependent manner.</p><p><strong>Conclusion: </strong>In summary, QZZG inhibited neuroexcitotoxicity and ferroptosis by regulating the NMDAR/NRF2/BACH1/ACSL4 pathway. The study provided a relatively novel perspective on the mechanism of traditional Chinese medicine (TCM) treatment of the disease.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":"667-679"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.12.029","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Neuronal protection is a well-established method of acute ischemic stroke (AIS) treatment. The pharmacodynamic effect of Piceatannol-3'-O-β-D-glucopyranoside (Chinese name: Hartigan, QZZG) on AIS has been reported, but the molecular mechanism of this effect remains unknown.

Purpose: The purpose of this study is to elucidate the pharmacodynamic effects and mechanisms of QZZG in the treatment of AIS.

Methods: A combined network pharmacology and metabolomics approach was used to predict the key targets and pathways of QZZG in the treatment of AIS and to elucidate the mechanism of QZZG through experimental validation.

Results: In this study, QZZG improved histopathologic features and reduced infarct volume and neurologic deficit scores. Integrated network pharmacology and metabolomics revealed that QZZG may protect neurons by regulating glutamate and its receptors, and that glutamate is closely related to NMDAR1, NRF2, and Caspase-3. Pathway analysis results suggested that NMDAR-mediated Ca2+ inward flow is one of the critical pathways. In terms of neuroexcitotoxicity QZZG inhibited glutamate content, reduced Ca2+ inward flow, protected mitochondrial function, and reduced ROS, as well as being able to effectively inhibit the expression of NMDAR1, Caspase-3, Bax, and promote the expression of Bcl-2, NMDAR2A. In terms of ferroptosis QZZG promoted NRF2, HO-1, GPX4 and nuclear-NRF2, inhibited the expression of BACH1 and ACSL4, and suppressed Fe2+ accumulation and lipid peroxidation. Silencing of BACH1 resulted in elevated expression of NRF2 and decreased expression of ACSL4, which inhibited the sensitivity of neurons to ferroptosis. QZZG was able to further increase NRF2 expression under conditions of silencing BACH1. QZZG induced NRF2 and inhibited BACH1, ACSL4 was inhibited by ML385, and inhibition of NRF2 induced the expression of BACH1 and ACSL4, QZZG protects neurons in an NRF2-dependent manner.

Conclusion: In summary, QZZG inhibited neuroexcitotoxicity and ferroptosis by regulating the NMDAR/NRF2/BACH1/ACSL4 pathway. The study provided a relatively novel perspective on the mechanism of traditional Chinese medicine (TCM) treatment of the disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
皮萨单酚-3'-O-β-D-吡喃葡萄糖苷通过NMDAR/NRF2/BACH1/ACSL4通路抑制急性缺血性脑卒中的神经兴奋毒性和铁中毒。
背景:神经元保护是一种行之有效的治疗急性缺血性卒中(AIS)的方法。picetanol -3′-O-β-D-glucopyranoside(中文名:曲扎止甘,QZZG)对AIS的药效学作用已有报道,但其分子机制尚不清楚。目的:本研究的目的是阐明QZZG治疗AIS的药效学作用及其机制。方法:采用网络药理学和代谢组学相结合的方法预测QZZG治疗AIS的关键靶点和通路,并通过实验验证阐明QZZG的作用机制。结果:在本研究中,QZZG改善了组织病理学特征,降低了梗死体积和神经功能缺损评分。综合网络药理学和代谢组学研究发现,QZZG可能通过调节谷氨酸及其受体来保护神经元,谷氨酸与NMDAR1、NRF2和Caspase-3密切相关。通路分析结果表明,nmdar介导的Ca2+向内流动是关键通路之一。在神经兴奋毒性方面,QZZG抑制谷氨酸含量,减少Ca2+向内流动,保护线粒体功能,减少ROS,并能有效抑制NMDAR1、Caspase-3、Bax的表达,促进Bcl-2、NMDAR2A的表达。在铁下垂方面,QZZG促进NRF2、HO-1、GPX4和nuclear-NRF2,抑制BACH1和ACSL4的表达,抑制Fe2+积累和脂质过氧化。沉默BACH1导致NRF2表达升高,ACSL4表达降低,抑制神经元对铁下垂的敏感性。在沉默BACH1的条件下,QZZG能够进一步提高NRF2的表达。QZZG诱导NRF2,抑制BACH1, ML385抑制ACSL4,抑制NRF2诱导BACH1和ACSL4的表达,QZZG以NRF2依赖的方式保护神经元。结论:综上所述,QZZG通过调节NMDAR/NRF2/BACH1/ACSL4通路抑制神经兴奋性毒性和铁下垂。该研究为中医治疗该病的机制提供了一个相对新颖的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
ferrous ion assay kit
索莱宝
RIPA buffer (contains 1% protease and 1% phosphatase inhibitor)
索莱宝
BCA protein assay kit
索莱宝
Glutamate Assay Kit
索莱宝
2,3,5-Triphenyltetrazolium chloride
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
Interaction mechanism of lipid metabolism remodeling, oxidative stress, and immune response mediated by Epinephelus coioides SRECII. Corrigendum to "Melatonin alleviates early brain injury by inhibiting the NRF2-mediated ferroptosis pathway after subarachnoid hemorrhage" [Free Radic. Biol. Med. 208 (2023) 555-570]. CircMETTL9 targets CCAR2 to induce neuronal oxidative stress and apoptosis via mitochondria-mediated pathways following traumatic brain injury. High-adhesion ovarian cancer cell resistance to ferroptosis: The activation of NRF2/FSP1 pathway by junctional adhesion molecule JAM3. Relevance of the Platelet-activating factor system in chemical warfare agents-induced effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1