Novel models based on machine learning to predict the prognosis of metaplastic breast cancer.

IF 5.7 2区 医学 Q1 OBSTETRICS & GYNECOLOGY Breast Pub Date : 2024-12-11 DOI:10.1016/j.breast.2024.103858
Yinghui Zhang, Wenxin An, Cong Wang, Xiaolei Liu, Qihong Zhang, Yue Zhang, Shaoqiang Cheng
{"title":"Novel models based on machine learning to predict the prognosis of metaplastic breast cancer.","authors":"Yinghui Zhang, Wenxin An, Cong Wang, Xiaolei Liu, Qihong Zhang, Yue Zhang, Shaoqiang Cheng","doi":"10.1016/j.breast.2024.103858","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metaplastic breast cancer (MBC) is a rare and highly aggressive histological subtype of breast cancer. There remains a significant lack of precise predictive models available for use in clinical practice.</p><p><strong>Methods: </strong>This study utilized patient data from the SEER database (2010-2018) for data analysis. We utilized prognostic factors to develop a novel machine learning model (CatBoost) for predicting patient survival rates. Simultaneously, our hospital's cohort of MBC patients was utilized to validate our model. We compared the benefits of radiotherapy among the three groups of patients.</p><p><strong>Results: </strong>The CatBoost model we developed exhibits high accuracy and correctness, making it the best-performing model for predicting survival outcomes in patients with MBC (1-year AUC = 0.833, 3-year AUC = 0.806; 5-year AUC = 0.810). Furthermore, the CatBoost model maintains strong performance in an external independent dataset, with AUC values of 0.937 for 1-year survival, 0.907 for 3-year survival, and 0.890 for 5-year survival, respectively. Radiotherapy is more suitable for patients undergoing breast-conserving surgery with M0 stage [group1: (OS:HR = 0.499, 95%CI 0.320-0.777 p < 0.001; BCSS: HR = 0.519, 95%CI 0.290-0.929 p = 0.008)] and those with T3-4/N2-3M0 stage undergoing mastectomy [group2: (OS:HR = 0.595, 95%CI 0.437-0.810 p < 0.001; BCSS: HR = 0.607, 95%CI 0.427-0.862 p = 0.003)], compared to patients with stage T1-2/N0-1M0 undergoing mastectomy [group3: (OS:HR = 1.090, 95%CI 0.673-1.750 p = 0.730; BCSS: HR = 1.909, 95%CI 1.036-3.515 p = 0.038)].</p><p><strong>Conclusion: </strong>We developed three machine learning prognostic models to predict survival rates in patients with MBC. Radiotherapy is considered more appropriate for patients who have undergone breast-conserving surgery with M0 stage as well as those in stage T3-4/N2-3M0 undergoing mastectomy.</p>","PeriodicalId":9093,"journal":{"name":"Breast","volume":"79 ","pages":"103858"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.breast.2024.103858","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Metaplastic breast cancer (MBC) is a rare and highly aggressive histological subtype of breast cancer. There remains a significant lack of precise predictive models available for use in clinical practice.

Methods: This study utilized patient data from the SEER database (2010-2018) for data analysis. We utilized prognostic factors to develop a novel machine learning model (CatBoost) for predicting patient survival rates. Simultaneously, our hospital's cohort of MBC patients was utilized to validate our model. We compared the benefits of radiotherapy among the three groups of patients.

Results: The CatBoost model we developed exhibits high accuracy and correctness, making it the best-performing model for predicting survival outcomes in patients with MBC (1-year AUC = 0.833, 3-year AUC = 0.806; 5-year AUC = 0.810). Furthermore, the CatBoost model maintains strong performance in an external independent dataset, with AUC values of 0.937 for 1-year survival, 0.907 for 3-year survival, and 0.890 for 5-year survival, respectively. Radiotherapy is more suitable for patients undergoing breast-conserving surgery with M0 stage [group1: (OS:HR = 0.499, 95%CI 0.320-0.777 p < 0.001; BCSS: HR = 0.519, 95%CI 0.290-0.929 p = 0.008)] and those with T3-4/N2-3M0 stage undergoing mastectomy [group2: (OS:HR = 0.595, 95%CI 0.437-0.810 p < 0.001; BCSS: HR = 0.607, 95%CI 0.427-0.862 p = 0.003)], compared to patients with stage T1-2/N0-1M0 undergoing mastectomy [group3: (OS:HR = 1.090, 95%CI 0.673-1.750 p = 0.730; BCSS: HR = 1.909, 95%CI 1.036-3.515 p = 0.038)].

Conclusion: We developed three machine learning prognostic models to predict survival rates in patients with MBC. Radiotherapy is considered more appropriate for patients who have undergone breast-conserving surgery with M0 stage as well as those in stage T3-4/N2-3M0 undergoing mastectomy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习预测移行细胞乳腺癌预后的新模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Breast
Breast 医学-妇产科学
CiteScore
8.70
自引率
2.60%
发文量
165
审稿时长
59 days
期刊介绍: The Breast is an international, multidisciplinary journal for researchers and clinicians, which focuses on translational and clinical research for the advancement of breast cancer prevention, diagnosis and treatment of all stages.
期刊最新文献
Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i): Mechanisms of resistance and where to find them. Trends in breast cancer among elderly women: Development in estrogen and HER2 subtypes in the last ten years. Evaluating the impact of a tertiary multidisciplinary meeting in metastatic breast cancer: A prospective study. Survival feature and trend of female breast cancer: A comprehensive review of survival analysis from cancer registration data. Beyond Hormone Receptors: liquid biopsy tools to unveil new clinical meanings and empower therapeutic decision-making in Luminal-like metastatic breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1