Caroline Krams, Anna J Esser, Melissa Klenzendorf, Katharina Klotz, Ute Spiekerkoetter, Donald W Jacobsen, Clyde A Smith, Ailiena O Maggiolo, Luciana Hannibal
{"title":"The cobalamin processing enzyme of Trichoplax adhaerens.","authors":"Caroline Krams, Anna J Esser, Melissa Klenzendorf, Katharina Klotz, Ute Spiekerkoetter, Donald W Jacobsen, Clyde A Smith, Ailiena O Maggiolo, Luciana Hannibal","doi":"10.1016/j.jbc.2024.108089","DOIUrl":null,"url":null,"abstract":"<p><p>Cobalamin (Cbl) is an essential cofactor for methionine synthase (MS) and methylmalonyl-CoA mutase (MUT), but it must first undergo chemical processing for utilization in animals. In humans, this processing comprises β-axial ligand cleavage and Cbl reduction and is performed by the enzyme MMACHC (HsCblC). Although the functionality of CblC is well-understood in higher order organisms, little is known about the evolutionary origin of these enzymes and the reactivity of CblCs in lower-order organisms with unique environmental and cellular conditions. Therefore, we investigated the CblC of Trichoplax adhaerens (TaCblC), a marine organism considered to be one of the earliest evolutionarily diverging and simplest living animals. The TaCblC sequence contained conserved residues important for Cbl processing in higher-order organisms. The predicted structure of TaCblC closely resembled known CblC structures and had features consistent with Cbl and co-substrate binding capabilities. Recombinantly expressed TaCblC could bind and process several Cbl analogues using glutathione or NADH as co-substrates, similarly to previously characterized CblCs, but with variable rates and dependencies on the presence of oxygen. Notably, TaCblC dealkylates methylcobalamin at a rate ca. 2-times higher than HsCblC, although this comes with a lower ratio of product to glutathione oxidation, suggesting higher unproductive electron transfer in the TaCblC system. This reflects differences in cellular conditions of the more ancient homologue, which lives in low oxygen levels and an environment of low Cbl biovailability (∼2 pM in sea water).</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108089"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108089","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cobalamin (Cbl) is an essential cofactor for methionine synthase (MS) and methylmalonyl-CoA mutase (MUT), but it must first undergo chemical processing for utilization in animals. In humans, this processing comprises β-axial ligand cleavage and Cbl reduction and is performed by the enzyme MMACHC (HsCblC). Although the functionality of CblC is well-understood in higher order organisms, little is known about the evolutionary origin of these enzymes and the reactivity of CblCs in lower-order organisms with unique environmental and cellular conditions. Therefore, we investigated the CblC of Trichoplax adhaerens (TaCblC), a marine organism considered to be one of the earliest evolutionarily diverging and simplest living animals. The TaCblC sequence contained conserved residues important for Cbl processing in higher-order organisms. The predicted structure of TaCblC closely resembled known CblC structures and had features consistent with Cbl and co-substrate binding capabilities. Recombinantly expressed TaCblC could bind and process several Cbl analogues using glutathione or NADH as co-substrates, similarly to previously characterized CblCs, but with variable rates and dependencies on the presence of oxygen. Notably, TaCblC dealkylates methylcobalamin at a rate ca. 2-times higher than HsCblC, although this comes with a lower ratio of product to glutathione oxidation, suggesting higher unproductive electron transfer in the TaCblC system. This reflects differences in cellular conditions of the more ancient homologue, which lives in low oxygen levels and an environment of low Cbl biovailability (∼2 pM in sea water).
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.