Ghamdan Beshr, Asfandyar Sikandar, Julia Gläser, Mario Fares, Roman Sommer, Stefanie Wagner, Jesko Köhnke, Alexander Titz
{"title":"A fucose-binding superlectin from Enterobacter cloacae with high Lewis and ABO blood group antigen specificity.","authors":"Ghamdan Beshr, Asfandyar Sikandar, Julia Gläser, Mario Fares, Roman Sommer, Stefanie Wagner, Jesko Köhnke, Alexander Titz","doi":"10.1016/j.jbc.2024.108151","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new antiinfectives. To find new potential targets for antiinfectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species. Here, we recombinantly produced and biophysically characterized a homolog that comprises one LecA domain and one additional novel protein domain. This protein was termed Enterobacter cloacae lectin A (EclA) and found to bindl-fucose. Glycan array analysis revealed a high specificity for the LewisA antigen and the type II H-antigen (blood group O) for EclA, while related antigens LewisX, Y, and B as well as blood group A or B were not bound. We developed a competitive binding assay to quantify blood group antigen binding specificity in solution. Finally, the crystal structure of EclA could be solved in complex with methyl α-l-selenofucoside. It revealed the unexpected binding of the carbohydrate ligand to the second domain, which comprises a novel fold that dimerizes via strand-swapping resulting in an intertwined beta sheet.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108151"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108151","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new antiinfectives. To find new potential targets for antiinfectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species. Here, we recombinantly produced and biophysically characterized a homolog that comprises one LecA domain and one additional novel protein domain. This protein was termed Enterobacter cloacae lectin A (EclA) and found to bindl-fucose. Glycan array analysis revealed a high specificity for the LewisA antigen and the type II H-antigen (blood group O) for EclA, while related antigens LewisX, Y, and B as well as blood group A or B were not bound. We developed a competitive binding assay to quantify blood group antigen binding specificity in solution. Finally, the crystal structure of EclA could be solved in complex with methyl α-l-selenofucoside. It revealed the unexpected binding of the carbohydrate ligand to the second domain, which comprises a novel fold that dimerizes via strand-swapping resulting in an intertwined beta sheet.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.