{"title":"Muscle PGC-1α Overexpression Drives Metabolite Secretion Boosting Subcutaneous Adipocyte Browning","authors":"Caterina Miro, Ciro Menale, Lucia Acampora, Annarita Nappi, Serena Sagliocchi, Federica Restolfer, Sepehr Torabinejad, Mariano Stornaiuolo, Monica Dentice, Annunziata Gaetana Cicatiello","doi":"10.1002/jcp.31480","DOIUrl":null,"url":null,"abstract":"<p>Muscle and adipose tissue (AT) are in mutual interaction through the integration of endocrine and biochemical signals, thus regulating whole-body function and physiology. Besides a traditional view of endocrine relationships that imply the release of cytokines and growth factors, it is becoming increasingly clear that a metabolic network involving metabolites as signal molecules also exists between the two tissues. By elevating the number and functionality of mitochondria, a key role in muscle metabolism is played by the master regulator of mitochondrial biogenesis peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α), that induces a fiber type shift from glycolytic to oxidative myofibers. As a consequence, the upregulation of muscle respiratory rate might affect metabolite production and consumption. However, the underlying mechanisms have not yet been fully elucidated. Here, we used a muscle-specific PGC-1α overexpressing mouse model (MCK-PGC-1α) to analyze the metabolite secretion profile of serum and culture medium recovered from MCK-PGC-1α muscle fibers by NMR. We revealed modified levels of different metabolites that might be ascribed to the metabolic activation of the skeletal muscle fibers. Notably, the dysregulated levels of these metabolites affected adipocyte differentiation, as well as the browning process in vitro and in vivo. Interestingly such effect was exacerbated in the subcutaneous WAT, while only barely present in the visceral WAT. Our data confirm a prominent role of PGC-1α as a trigger of mitochondrial function in skeletal muscle and propose a novel function of this master regulator gene in modulating the metabolite production in turn affecting the activation of WAT and its conversion toward the browning.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733859/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31480","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Muscle and adipose tissue (AT) are in mutual interaction through the integration of endocrine and biochemical signals, thus regulating whole-body function and physiology. Besides a traditional view of endocrine relationships that imply the release of cytokines and growth factors, it is becoming increasingly clear that a metabolic network involving metabolites as signal molecules also exists between the two tissues. By elevating the number and functionality of mitochondria, a key role in muscle metabolism is played by the master regulator of mitochondrial biogenesis peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α), that induces a fiber type shift from glycolytic to oxidative myofibers. As a consequence, the upregulation of muscle respiratory rate might affect metabolite production and consumption. However, the underlying mechanisms have not yet been fully elucidated. Here, we used a muscle-specific PGC-1α overexpressing mouse model (MCK-PGC-1α) to analyze the metabolite secretion profile of serum and culture medium recovered from MCK-PGC-1α muscle fibers by NMR. We revealed modified levels of different metabolites that might be ascribed to the metabolic activation of the skeletal muscle fibers. Notably, the dysregulated levels of these metabolites affected adipocyte differentiation, as well as the browning process in vitro and in vivo. Interestingly such effect was exacerbated in the subcutaneous WAT, while only barely present in the visceral WAT. Our data confirm a prominent role of PGC-1α as a trigger of mitochondrial function in skeletal muscle and propose a novel function of this master regulator gene in modulating the metabolite production in turn affecting the activation of WAT and its conversion toward the browning.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.