The decline in tropical land carbon sink drove high atmospheric CO2 growth rate in 2023.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-10-22 eCollection Date: 2024-12-01 DOI:10.1093/nsr/nwae365
Yanchen Gui, Kai Wang, Zhe Jin, Heyuan Wang, Hanzhi Deng, Xiangyi Li, Xiangjun Tian, Tao Wang, Wei Chen, Tengjiao Wang, Shilong Piao
{"title":"The decline in tropical land carbon sink drove high atmospheric CO<sub>2</sub> growth rate in 2023.","authors":"Yanchen Gui, Kai Wang, Zhe Jin, Heyuan Wang, Hanzhi Deng, Xiangyi Li, Xiangjun Tian, Tao Wang, Wei Chen, Tengjiao Wang, Shilong Piao","doi":"10.1093/nsr/nwae365","DOIUrl":null,"url":null,"abstract":"<p><p>Atmospheric CO<sub>2</sub> growth rate (CGR), reflecting the carbon balance between anthropogenic emissions and net uptake from land and ocean, largely determines the magnitude and speed of global warming. The CGR at Mauna Loa Baseline Observatory reached a record high in 2023. We quantified major components of the global carbon balance for 2023, by developing a framework that integrated fossil fuel CO<sub>2</sub> emissions data and an atmospheric inversion from the Global ObservatioN-based system for monitoring Greenhouse GAses (GONGGA) with two artificial intelligence (AI) models derived from dynamic global vegetation models. We attributed the record high CGR increase in 2023 compared to 2022 primarily to the large decline in land carbon sink (1803 ± 197 TgC year<sup>-1</sup>), with minor contributions from a small reduction in ocean carbon sink (184 TgC year<sup>-1</sup>) and a slight increase in fossil fuel emissions (24 TgC year<sup>-1</sup>). At least 78% of the global decline in land carbon sink was contributed by the decline in tropical sink, with GONGGA inversion (1354 TgC year<sup>-1</sup>) and AI simulations (1578 ± 666 TgC year<sup>-1</sup>) showing similar declines in the tropics. We further linked this tropical decline to the detrimental impact of El Niño-induced anomalous warming and drying on vegetation productivity in water-limited Sahel and southern Africa. Our successful attribution of CGR increase within a framework combining atmospheric inversion and AI simulations enabled near-real-time tracking of the global carbon budget, which had a one-year reporting lag.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 12","pages":"nwae365"},"PeriodicalIF":16.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646126/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae365","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric CO2 growth rate (CGR), reflecting the carbon balance between anthropogenic emissions and net uptake from land and ocean, largely determines the magnitude and speed of global warming. The CGR at Mauna Loa Baseline Observatory reached a record high in 2023. We quantified major components of the global carbon balance for 2023, by developing a framework that integrated fossil fuel CO2 emissions data and an atmospheric inversion from the Global ObservatioN-based system for monitoring Greenhouse GAses (GONGGA) with two artificial intelligence (AI) models derived from dynamic global vegetation models. We attributed the record high CGR increase in 2023 compared to 2022 primarily to the large decline in land carbon sink (1803 ± 197 TgC year-1), with minor contributions from a small reduction in ocean carbon sink (184 TgC year-1) and a slight increase in fossil fuel emissions (24 TgC year-1). At least 78% of the global decline in land carbon sink was contributed by the decline in tropical sink, with GONGGA inversion (1354 TgC year-1) and AI simulations (1578 ± 666 TgC year-1) showing similar declines in the tropics. We further linked this tropical decline to the detrimental impact of El Niño-induced anomalous warming and drying on vegetation productivity in water-limited Sahel and southern Africa. Our successful attribution of CGR increase within a framework combining atmospheric inversion and AI simulations enabled near-real-time tracking of the global carbon budget, which had a one-year reporting lag.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热带陆地碳汇的减少推动了 2023 年大气中二氧化碳的高增长率。
大气二氧化碳增长率(CGR)反映了人为排放与陆地和海洋净吸收之间的碳平衡,在很大程度上决定了全球变暖的程度和速度。莫纳罗亚基线观测站的二氧化碳增长率在 2023 年达到了历史新高。我们开发了一个框架,将化石燃料二氧化碳排放数据和基于全球观测网络的温室气体监测系统(GONGGA)的大气反演数据与两个从动态全球植被模型中得出的人工智能(AI)模型结合起来,量化了 2023 年全球碳平衡的主要组成部分。与 2022 年相比,2023 年的碳汇较高增幅主要归因于陆地碳汇的大幅减少(1803 ± 197 TgC 年-1),海洋碳汇的小幅减少(184 TgC 年-1)和化石燃料排放量的小幅增加(24 TgC 年-1)也起到了少量作用。全球陆地碳汇减少的至少78%是由热带碳汇减少造成的,GONGGA反演(1354 TgC年-1)和人工智能模拟(1578 ± 666 TgC年-1)显示热带地区的碳汇减少情况相似。我们进一步将热带地区的下降与厄尔尼诺引起的异常变暖和干燥对萨赫勒和南部非洲水资源有限地区植被生产力的不利影响联系起来。我们在大气反演和人工智能模拟相结合的框架内成功归因于 CGR 的增加,实现了对全球碳预算的近实时跟踪,而全球碳预算的报告滞后一年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
US-China cooperation and competition in science and technology. Cretaceous chewing-louse eggs on enantiornithine birds. Element cycling by environmental viruses. Reversible biomass aerogels with flame retardancy and smart elasticity. Core factor of NEXT complex, ZCCHC8, governs the silencing of LINE1 during spermatogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1