The activation of complement C5a-C5aR1 axis in astrocytes facilitates the neuropathogenesis due to EV-A71 infection by upregulating CXCL1.

IF 4 2区 医学 Q2 VIROLOGY Journal of Virology Pub Date : 2024-12-16 DOI:10.1128/jvi.01514-24
Peiyu Zhu, Wangquan Ji, Dong Li, Fang Wang, Tiantian Sun, Haiyan Yang, Shuaiyin Chen, Weiguo Zhang, Yuefei Jin, Guangcai Duan
{"title":"The activation of complement C5a-C5aR1 axis in astrocytes facilitates the neuropathogenesis due to EV-A71 infection by upregulating CXCL1.","authors":"Peiyu Zhu, Wangquan Ji, Dong Li, Fang Wang, Tiantian Sun, Haiyan Yang, Shuaiyin Chen, Weiguo Zhang, Yuefei Jin, Guangcai Duan","doi":"10.1128/jvi.01514-24","DOIUrl":null,"url":null,"abstract":"<p><p>Enterovirus A71 (EV-A71) is a common small RNA virus that is highly neuroinvasive. Emerging evidence indicates that the complement fragment C5a and its receptor C5aR1 are important drivers of neuroinflammation. However, the potential role of the C5a-C5aR1 axis in EV-A71 encephalitis remains largely elusive. Our previous studies revealed that EV-A71 can infect astrocytes and result in complement activation <i>in vivo</i>. Here, we investigated how complement factors interact with astrocytes to promote a severe inflammatory response upon EV-A71 infection. Our data revealed that EV-A71 infected mainly astrocytes and caused astrocyte activation in the mouse brain, which was further verified in patients with EV-A71 infection and U87-MG cells. Notably, EV-A71 infection led to activation of the C5a-C5aR1 axis in U87-MG cells, and knockdown (siC5aR1) or blockade (PMX53) of C5aR1 significantly suppressed EV-A71-induced astrocyte activation and proinflammatory cytokine (e.g., CXCL1) production. Next, the activation of the C5a-C5aR1 axis in mouse astrocytes was confirmed. Compared with C5aR1 knockout mice, wild-type mice presented more severe symptoms and lower survival rates after EV-A71 infection. C5aR1 deficiency or blockade significantly reduced EV-A71-induced pathological damage and proinflammatory cytokine production in the mouse brain. Importantly, an increased level of soluble C5a was strongly correlated with the severity of symptoms in patients with EV-A71 infection. By using confocal microscopy, primary astrocytes, and human specimens, we observed that the increase in CXCL1 levels resulted mainly from astrocytes. Neutralizing CXCL1 significantly alleviated the neuropathological changes caused by EV-A71 infection, and the production of CXCL1 in astrocytes was regulated by p38 MAPK signaling. Taken together, our findings indicate that the activation of the C5a-C5aR1 axis in astrocytes facilitates the neuropathological changes resulting from EV-A71 infection, emphasizing the potential role of p38 MAPK-mediated CXCL1 production in these alterations.</p><p><strong>Importance: </strong>Enterovirus A71 (EV-A71) is a common small RNA virus with highly neuroinvasive tendencies. Our previous studies took the view that EV-A71 could infect astrocytes and result in complement activation <i>in vivo</i>. We investigated how complement interacts with astrocytes to promote a severe inflammatory response upon EV-A71 infection in the study. As expected, our data demonstrate that EV-A71 triggers robust activation of the C5a-C5aR1 axis in astrocytes and that knockout or blockade of C5aR1 in animals exposed to lethal doses of EV-A71 significantly enhances survival by diminishing the production of the chemokines CXCL1 and IL-6. In addition, neutralizing CXCL1 significantly alleviates the neuropathogenesis caused by EV-A71 infection. Thus, inhibiting the C5a-C5aR1 axis has emerged as a potential therapeutic strategy to mitigate neural damage caused by EV-A71 infection.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0151424"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01514-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enterovirus A71 (EV-A71) is a common small RNA virus that is highly neuroinvasive. Emerging evidence indicates that the complement fragment C5a and its receptor C5aR1 are important drivers of neuroinflammation. However, the potential role of the C5a-C5aR1 axis in EV-A71 encephalitis remains largely elusive. Our previous studies revealed that EV-A71 can infect astrocytes and result in complement activation in vivo. Here, we investigated how complement factors interact with astrocytes to promote a severe inflammatory response upon EV-A71 infection. Our data revealed that EV-A71 infected mainly astrocytes and caused astrocyte activation in the mouse brain, which was further verified in patients with EV-A71 infection and U87-MG cells. Notably, EV-A71 infection led to activation of the C5a-C5aR1 axis in U87-MG cells, and knockdown (siC5aR1) or blockade (PMX53) of C5aR1 significantly suppressed EV-A71-induced astrocyte activation and proinflammatory cytokine (e.g., CXCL1) production. Next, the activation of the C5a-C5aR1 axis in mouse astrocytes was confirmed. Compared with C5aR1 knockout mice, wild-type mice presented more severe symptoms and lower survival rates after EV-A71 infection. C5aR1 deficiency or blockade significantly reduced EV-A71-induced pathological damage and proinflammatory cytokine production in the mouse brain. Importantly, an increased level of soluble C5a was strongly correlated with the severity of symptoms in patients with EV-A71 infection. By using confocal microscopy, primary astrocytes, and human specimens, we observed that the increase in CXCL1 levels resulted mainly from astrocytes. Neutralizing CXCL1 significantly alleviated the neuropathological changes caused by EV-A71 infection, and the production of CXCL1 in astrocytes was regulated by p38 MAPK signaling. Taken together, our findings indicate that the activation of the C5a-C5aR1 axis in astrocytes facilitates the neuropathological changes resulting from EV-A71 infection, emphasizing the potential role of p38 MAPK-mediated CXCL1 production in these alterations.

Importance: Enterovirus A71 (EV-A71) is a common small RNA virus with highly neuroinvasive tendencies. Our previous studies took the view that EV-A71 could infect astrocytes and result in complement activation in vivo. We investigated how complement interacts with astrocytes to promote a severe inflammatory response upon EV-A71 infection in the study. As expected, our data demonstrate that EV-A71 triggers robust activation of the C5a-C5aR1 axis in astrocytes and that knockout or blockade of C5aR1 in animals exposed to lethal doses of EV-A71 significantly enhances survival by diminishing the production of the chemokines CXCL1 and IL-6. In addition, neutralizing CXCL1 significantly alleviates the neuropathogenesis caused by EV-A71 infection. Thus, inhibiting the C5a-C5aR1 axis has emerged as a potential therapeutic strategy to mitigate neural damage caused by EV-A71 infection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
星形胶质细胞中补体 C5a-C5aR1 轴的激活通过上调 CXCL1 促进了 EV-A71 感染导致的神经发病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
期刊最新文献
Betacoronavirus internal protein: role in immune evasion and viral pathogenesis. Discovery of small molecules against porcine reproductive and respiratory syndrome virus replication by targeting NendoU activity. Induction of innate immunity and plant growth promotion in tomato unveils the antiviral nature of bacterial endophytes against groundnut bud necrosis virus. Induction of PD-1 and CD44 in CD4+ T cells by circulatory extracellular vesicles from severe dengue patients drives endothelial damage via the NF-kB signaling pathway. Octahedral small virus-like particles of dengue virus type 2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1