Multi-dynamic deep image prior for cardiac MRI.

ArXiv Pub Date : 2025-07-09
Marc Vornehm, Chong Chen, Muhammad Ahmad Sultan, Syed Murtaza Arshad, Yuchi Han, Florian Knoll, Rizwan Ahmad
{"title":"Multi-dynamic deep image prior for cardiac MRI.","authors":"Marc Vornehm, Chong Chen, Muhammad Ahmad Sultan, Syed Murtaza Arshad, Yuchi Han, Florian Knoll, Rizwan Ahmad","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cardiovascular magnetic resonance imaging is a powerful diagnostic tool for assessing cardiac structure and function. However, traditional breath-held imaging protocols pose challenges for patients with arrhythmias or limited breath-holding capacity. This work aims to overcome these limitations by developing a reconstruction framework that enables high-quality imaging in free-breathing conditions for various dynamic cardiac MRI protocols.</p><p><strong>Methods: </strong>Multi-Dynamic Deep Image Prior (M-DIP), a novel unsupervised reconstruction framework for accelerated real-time cardiac MRI, is introduced. To capture contrast or content variation, M-DIP first employs a spatial dictionary to synthesize a time-dependent intermediate image. Then, this intermediate image is further refined using time-dependent deformation fields that model cardiac and respiratory motion. Unlike prior DIP-based methods, M-DIP simultaneously captures physiological motion and frame-to-frame content variations, making it applicable to a wide range of dynamic applications.</p><p><strong>Results: </strong>We validate M-DIP using simulated MRXCAT cine phantom data as well as free-breathing real-time cine, single-shot late gadolinium enhancement (LGE), and first-pass perfusion data from clinical patients. Comparative analyses against state-of-the-art supervised and unsupervised approaches demonstrate M-DIP's performance and versatility. M-DIP achieved better image quality metrics on phantom data, higher reader scores on in-vivo cine and LGE data, and comparable scores on in-vivo perfusion data relative to another DIP-based approach.</p><p><strong>Conclusion: </strong>M-DIP enables high-quality reconstructions of real-time free-breathing cardiac MRI without requiring external training data. Its ability to model physiological motion and content variations makes it a promising approach for various dynamic imaging applications.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Cardiovascular magnetic resonance imaging is a powerful diagnostic tool for assessing cardiac structure and function. However, traditional breath-held imaging protocols pose challenges for patients with arrhythmias or limited breath-holding capacity. This work aims to overcome these limitations by developing a reconstruction framework that enables high-quality imaging in free-breathing conditions for various dynamic cardiac MRI protocols.

Methods: Multi-Dynamic Deep Image Prior (M-DIP), a novel unsupervised reconstruction framework for accelerated real-time cardiac MRI, is introduced. To capture contrast or content variation, M-DIP first employs a spatial dictionary to synthesize a time-dependent intermediate image. Then, this intermediate image is further refined using time-dependent deformation fields that model cardiac and respiratory motion. Unlike prior DIP-based methods, M-DIP simultaneously captures physiological motion and frame-to-frame content variations, making it applicable to a wide range of dynamic applications.

Results: We validate M-DIP using simulated MRXCAT cine phantom data as well as free-breathing real-time cine, single-shot late gadolinium enhancement (LGE), and first-pass perfusion data from clinical patients. Comparative analyses against state-of-the-art supervised and unsupervised approaches demonstrate M-DIP's performance and versatility. M-DIP achieved better image quality metrics on phantom data, higher reader scores on in-vivo cine and LGE data, and comparable scores on in-vivo perfusion data relative to another DIP-based approach.

Conclusion: M-DIP enables high-quality reconstructions of real-time free-breathing cardiac MRI without requiring external training data. Its ability to model physiological motion and content variations makes it a promising approach for various dynamic imaging applications.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动引导的心脏MRI深度图像先验。
心血管磁共振成像是评估心脏结构和功能的有力诊断工具。然而,传统的屏气成像方案对心律失常或屏气能力有限的患者提出了挑战。我们引入了一种新的用于加速实时心脏MRI的无监督重建框架——运动引导深度图像先验(M-DIP)。M-DIP使用空间字典合成时间相关的模板图像,然后使用时间相关的变形场对其进行进一步细化,从而模拟心脏和呼吸运动。与先前基于dip的方法不同,M-DIP同时捕获生理运动和帧到帧的内容变化,使其适用于广泛的动态应用。我们使用模拟的MRXCAT电影幻影数据以及来自临床患者的自由呼吸实时电影和单次晚期钆增强数据来验证M-DIP。与最先进的有监督和无监督方法的比较分析证明了M-DIP的性能和通用性。M-DIP在幻影数据上获得了更好的图像质量指标,在活体患者数据上获得了更高的读取器评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mesoscale tissue properties and electric fields in brain stimulation: Bridging the macroscopic and microscopic scales using layer-specific cortical conductivity. Unlocking hidden biomolecular conformational landscapes in diffusion models at inference time. BioModelsRAG: A Biological Modeling Assistant Using RAG (Retrieval Augmented Generation). How 'Neural' is a Neural Foundation Model? Zero-information limit of a collective olfactory search model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1