Treatment with TNFα and lipolysis-stimulated lipoprotein receptor (LSR) antibody in the presence of HDAC inhibitors promotes apoptosis in human salivary duct adenocarcinoma.
{"title":"Treatment with TNFα and lipolysis-stimulated lipoprotein receptor (LSR) antibody in the presence of HDAC inhibitors promotes apoptosis in human salivary duct adenocarcinoma.","authors":"Soshi Nishida, Takumi Konno, Takayuki Kohno, Masahiko Ohyanagi, Masaya Nakano, Kizuku Ohwada, Kazufumi Obata, Takuya Kakuki, Akito Kakiuchi, Makoto Kurose, Kenichi Takano, Takashi Kojima","doi":"10.1080/21688370.2024.2437215","DOIUrl":null,"url":null,"abstract":"<p><p>Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial homeostasis. LSR is highly expressed in well-differentiated cancers, and its expression decreases during malignancy. The LSR antibody inhibits cell growth and promotes apoptosis in some cancers. Histone deacetylases (HDACs) are thought to play a crucial role in carcinogenesis, and HDAC inhibitors promote differentiation and prevent cell proliferation and migration in cancers. HDAC inhibitors together with TNFα also induce apoptosis via TNFα-related apoptosis-inducing ligand (TRAIL) in some cancers. In this study, we investigated the apoptosis signaling induced by an anti-LSR antibody in human salivary duct adenocarcinoma (SDC) cell line A253, compared to TRAIL-induced apoptosis. A253 cells were treated with human recombinant TNFα with or without HDAC inhibitor trichostatin A (TSA) and quisinostat (JNJ-26481585). Treatment using TNFα with HDAC inhibitors markedly induced apoptosis in A253 cells and the anti-TNFα antibody prevented the induced apoptosis. A253 cells were treated with an antibody against the extracellular N-terminal domain of human LSR (LSR-N-ab) with or without HDAC inhibitors. Treatment with HDAC inhibitors induced LSR expression in the membranes of A253 cells. Treatment using LSR-N-ab with HDAC inhibitors markedly promoted apoptosis in A253 cells. The tricellular signaling pathway JNK inhibitor SP600125 and Hippo pathway MST1/2 inhibitor XMU-MP-1 prevented the apoptosis induced by treatment using TNFα or LSR-N-ab with HDAC inhibitors. Our findings indicated that treatment with TNFα or LSR-N-ab with HDAC inhibitors might be useful in the therapy for human SDC by enhancing apoptosis.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2437215"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2024.2437215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lipolysis-stimulated lipoprotein receptor (LSR), a lipid metabolism-related factor localized in tricellular tight junctions (tTJs), plays an important role in maintaining the epithelial homeostasis. LSR is highly expressed in well-differentiated cancers, and its expression decreases during malignancy. The LSR antibody inhibits cell growth and promotes apoptosis in some cancers. Histone deacetylases (HDACs) are thought to play a crucial role in carcinogenesis, and HDAC inhibitors promote differentiation and prevent cell proliferation and migration in cancers. HDAC inhibitors together with TNFα also induce apoptosis via TNFα-related apoptosis-inducing ligand (TRAIL) in some cancers. In this study, we investigated the apoptosis signaling induced by an anti-LSR antibody in human salivary duct adenocarcinoma (SDC) cell line A253, compared to TRAIL-induced apoptosis. A253 cells were treated with human recombinant TNFα with or without HDAC inhibitor trichostatin A (TSA) and quisinostat (JNJ-26481585). Treatment using TNFα with HDAC inhibitors markedly induced apoptosis in A253 cells and the anti-TNFα antibody prevented the induced apoptosis. A253 cells were treated with an antibody against the extracellular N-terminal domain of human LSR (LSR-N-ab) with or without HDAC inhibitors. Treatment with HDAC inhibitors induced LSR expression in the membranes of A253 cells. Treatment using LSR-N-ab with HDAC inhibitors markedly promoted apoptosis in A253 cells. The tricellular signaling pathway JNK inhibitor SP600125 and Hippo pathway MST1/2 inhibitor XMU-MP-1 prevented the apoptosis induced by treatment using TNFα or LSR-N-ab with HDAC inhibitors. Our findings indicated that treatment with TNFα or LSR-N-ab with HDAC inhibitors might be useful in the therapy for human SDC by enhancing apoptosis.
脂溶刺激脂蛋白受体(LSR)是一种定位于三细胞紧密连接(tTJs)的脂质代谢相关因子,在维持上皮稳态中起重要作用。LSR在高分化肿瘤中高表达,在恶性肿瘤中表达降低。在某些癌症中,LSR抗体抑制细胞生长并促进细胞凋亡。组蛋白去乙酰化酶(HDAC)被认为在癌症发生中起着至关重要的作用,HDAC抑制剂促进癌症细胞分化并阻止细胞增殖和迁移。在某些癌症中,HDAC抑制剂与TNFα一起通过TNFα相关的凋亡诱导配体(TRAIL)诱导细胞凋亡。在这项研究中,我们研究了抗lsr抗体在人唾液管腺癌(SDC)细胞系A253中诱导的细胞凋亡信号,并与trail诱导的细胞凋亡进行了比较。用人重组TNFα加或不加HDAC抑制剂trichostatin A (TSA)和quisinostat (JNJ-26481585)处理A253细胞。TNFα联合HDAC抑制剂可显著诱导A253细胞凋亡,抗TNFα抗体可阻止诱导的细胞凋亡。用抗人LSR细胞外n端结构域(LSR- n -ab)的抗体(含或不含HDAC抑制剂)处理A253细胞。HDAC抑制剂可诱导A253细胞膜上LSR的表达。LSR-N-ab联合HDAC抑制剂显著促进A253细胞凋亡。三细胞信号通路JNK抑制剂SP600125和Hippo通路MST1/2抑制剂XMU-MP-1可阻止TNFα或LSR-N-ab联合HDAC抑制剂诱导的细胞凋亡。我们的研究结果表明,用TNFα或LSR-N-ab联合HDAC抑制剂治疗可能通过增强细胞凋亡来治疗人类SDC。
期刊介绍:
Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.