Hannah Murphy-Marshman, Iordanka A Ivanova, Moshmi Bhattacharya, Lina Dagnino
{"title":"β-arrestin 1 and integrin-linked kinase interact in epidermal keratinocytes and regulate cell motility.","authors":"Hannah Murphy-Marshman, Iordanka A Ivanova, Moshmi Bhattacharya, Lina Dagnino","doi":"10.1080/21688370.2025.2465048","DOIUrl":null,"url":null,"abstract":"<p><p>Arrestins and integrin-linked kinase (ILK) are important scaffold proteins that regulate myriad cell functions in metazoans. β-arrestins, first identified as critical components in G-protein-coupled receptor (GPCR) signaling pathways, participate in inflammatory, immunomodulatory and tissue repair processes in GPCR-dependent and -independent manners. ILK is a central mediator of signaling cascades elicited by activation of integrins, regulating cell motility, proliferation, and mechanotransduction. In the epidermis, ILK is essential for maintenance of barrier function, hair follicle development, melanocyte colonization and regeneration after injury. In this tissue, β-arrestin 2 mitigates inflammatory processes and development of allergic dermatitis, which also is associated with loss of epidermal barrier function. However, the functional role of β-arrestin 1 in epidermal cells is poorly understood. We now report that β-arrestin 1 directly binds ILK, forming hitherto unidentified protein complexes in epidermal keratinocytes. In the absence of exogenous GPCR ligand stimulation, β-arrestin 1 and ILK are found throughout the cytoplasm in epidermal keratinocytes, and also co-localize to plasma membrane regions associated with cell protrusions. Inactivation of the genes that encode both β-arrestin 1 and 2 attenuates forward cell migration, whereas expression of ILK together with β-arrestin 1 restores cell motility. The cooperative effect of ILK and β-arrestin 1 in promoting directional cell migration may have important implications for epidermal regeneration and reestablishment of barrier function after injury.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2465048"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2025.2465048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Arrestins and integrin-linked kinase (ILK) are important scaffold proteins that regulate myriad cell functions in metazoans. β-arrestins, first identified as critical components in G-protein-coupled receptor (GPCR) signaling pathways, participate in inflammatory, immunomodulatory and tissue repair processes in GPCR-dependent and -independent manners. ILK is a central mediator of signaling cascades elicited by activation of integrins, regulating cell motility, proliferation, and mechanotransduction. In the epidermis, ILK is essential for maintenance of barrier function, hair follicle development, melanocyte colonization and regeneration after injury. In this tissue, β-arrestin 2 mitigates inflammatory processes and development of allergic dermatitis, which also is associated with loss of epidermal barrier function. However, the functional role of β-arrestin 1 in epidermal cells is poorly understood. We now report that β-arrestin 1 directly binds ILK, forming hitherto unidentified protein complexes in epidermal keratinocytes. In the absence of exogenous GPCR ligand stimulation, β-arrestin 1 and ILK are found throughout the cytoplasm in epidermal keratinocytes, and also co-localize to plasma membrane regions associated with cell protrusions. Inactivation of the genes that encode both β-arrestin 1 and 2 attenuates forward cell migration, whereas expression of ILK together with β-arrestin 1 restores cell motility. The cooperative effect of ILK and β-arrestin 1 in promoting directional cell migration may have important implications for epidermal regeneration and reestablishment of barrier function after injury.
期刊介绍:
Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.