Genetic mechanisms of axial patterning in Apeltes quadracus.

IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Evolution Letters Pub Date : 2024-08-07 eCollection Date: 2024-12-01 DOI:10.1093/evlett/qrae041
Amy L Herbert, David Lee, Matthew J McCoy, Veronica C Behrens, Julia I Wucherpfennig, David M Kingsley
{"title":"Genetic mechanisms of axial patterning in <i>Apeltes quadracus</i>.","authors":"Amy L Herbert, David Lee, Matthew J McCoy, Veronica C Behrens, Julia I Wucherpfennig, David M Kingsley","doi":"10.1093/evlett/qrae041","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic mechanisms underlying striking axial patterning changes in wild species are still largely unknown. Previous studies have shown that <i>Apeltes quadracus</i> fish, commonly known as fourspine sticklebacks, have evolved multiple different axial patterns in wild populations. Here, we revisit classic locations in Nova Scotia, Canada, where both high-spined and low-spined morphs are particularly common. Using genetic crosses and quantitative trait locus (QTL) mapping, we examine the genetic architecture of wild differences in several axial patterning traits, including the number and length of prominent dorsal spines, the number of underlying median support bones (pterygiophores), and the number and ratio of abdominal and caudal vertebrae along the anterior-posterior body axis. Our studies identify a highly significant QTL on chromosome 6 that controls a substantial fraction of phenotypic variation in multiple dorsal spine and pterygiophore traits (~15%-30% variance explained). An additional smaller-effect QTL on chromosome 14 contributes to the lengths of both the last dorsal spine and anal spine (~9% variance explained). 1 or no QTL were detected for differences in the numbers of abdominal and caudal vertebrae. The major-effect patterning QTL on chromosome 6 is centered on the <i>HOXDB</i> gene cluster, where sequence changes in a noncoding axial regulatory enhancer have previously been associated with prominent dorsal spine differences in <i>Apeltes</i>. The QTL that have the largest effects on dorsal spine number and length traits map to different chromosomes in <i>Apeltes</i> and <i>Gasterosteus</i>, 2 distantly related stickleback genera. However, in both genera, the major-effect QTL for prominent skeletal changes in wild populations maps to linked clusters of powerful developmental control genes. This study, therefore, bolsters the body of evidence that regulatory changes in developmental gene clusters provide a common genetic mechanism for evolving major morphological changes in natural species.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"8 6","pages":"893-901"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae041","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The genetic mechanisms underlying striking axial patterning changes in wild species are still largely unknown. Previous studies have shown that Apeltes quadracus fish, commonly known as fourspine sticklebacks, have evolved multiple different axial patterns in wild populations. Here, we revisit classic locations in Nova Scotia, Canada, where both high-spined and low-spined morphs are particularly common. Using genetic crosses and quantitative trait locus (QTL) mapping, we examine the genetic architecture of wild differences in several axial patterning traits, including the number and length of prominent dorsal spines, the number of underlying median support bones (pterygiophores), and the number and ratio of abdominal and caudal vertebrae along the anterior-posterior body axis. Our studies identify a highly significant QTL on chromosome 6 that controls a substantial fraction of phenotypic variation in multiple dorsal spine and pterygiophore traits (~15%-30% variance explained). An additional smaller-effect QTL on chromosome 14 contributes to the lengths of both the last dorsal spine and anal spine (~9% variance explained). 1 or no QTL were detected for differences in the numbers of abdominal and caudal vertebrae. The major-effect patterning QTL on chromosome 6 is centered on the HOXDB gene cluster, where sequence changes in a noncoding axial regulatory enhancer have previously been associated with prominent dorsal spine differences in Apeltes. The QTL that have the largest effects on dorsal spine number and length traits map to different chromosomes in Apeltes and Gasterosteus, 2 distantly related stickleback genera. However, in both genera, the major-effect QTL for prominent skeletal changes in wild populations maps to linked clusters of powerful developmental control genes. This study, therefore, bolsters the body of evidence that regulatory changes in developmental gene clusters provide a common genetic mechanism for evolving major morphological changes in natural species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Apeltes quadracus 轴突形态的遗传机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
期刊最新文献
Anisogamy and sex roles: a commentary. Anisogamy and the Darwin-Bateman paradigm. The role of between-group signaling in the evolution of primate ornamentation. The structure of the environment influences the patterns and genetics of local adaptation. Testing the genomic overlap between intraspecific mating traits and interspecific mating barriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1