Nonthakorn Olaranont, Chaozhen Wei, John Lowengrub, Min Wu
{"title":"Chemomechanical regulation of growing tissues from a thermodynamically-consistent framework and its application to tumor spheroid growth.","authors":"Nonthakorn Olaranont, Chaozhen Wei, John Lowengrub, Min Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>It is widely recognized that reciprocal interactions between cells and their microenvironment, via mechanical forces and biochemical signaling pathways, regulate cell behaviors during normal development, homeostasis and disease progression such as cancer. However, it is still not well understood how complex patterns of tissue growth emerge. Here, we propose a framework for the chemomechanical regulation of growth based on thermodynamics of continua and growth-elasticity to predict growth patterns. Combining the elastic and chemical energies, we use an energy variational approach to derive a novel formulation that incorporates an energy-dissipating stress relaxation and biochemomechanical regulation of the volumetric growth rate. We validate the model using experimental data from growth of tumor spheroids in confined environments. We also investigate the influence of model parameters, including tissue rearrangement rate, tissue compressibility, strength of mechanical feedback and external mechanical stimuli, on the growth patterns of tumor spheroids.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is widely recognized that reciprocal interactions between cells and their microenvironment, via mechanical forces and biochemical signaling pathways, regulate cell behaviors during normal development, homeostasis and disease progression such as cancer. However, it is still not well understood how complex patterns of tissue growth emerge. Here, we propose a framework for the chemomechanical regulation of growth based on thermodynamics of continua and growth-elasticity to predict growth patterns. Combining the elastic and chemical energies, we use an energy variational approach to derive a novel formulation that incorporates an energy-dissipating stress relaxation and biochemomechanical regulation of the volumetric growth rate. We validate the model using experimental data from growth of tumor spheroids in confined environments. We also investigate the influence of model parameters, including tissue rearrangement rate, tissue compressibility, strength of mechanical feedback and external mechanical stimuli, on the growth patterns of tumor spheroids.