Classification and prediction of variants associated with hearing loss using sequence information in the vicinity of mutation sites.

Xiao Liu, Li Teng, Jing Sun
{"title":"Classification and prediction of variants associated with hearing loss using sequence information in the vicinity of mutation sites.","authors":"Xiao Liu, Li Teng, Jing Sun","doi":"10.1016/j.compbiolchem.2024.108321","DOIUrl":null,"url":null,"abstract":"<p><p>Hearing impairment is a major global health problem, affecting more than 5 % of the world's population at various ages, from neonates to the elderly. Among the common genetic variations in humans, single nucleotide variations and small insertions or deletions predominate. The study of hearing loss resulting from these variations is proving invaluable in the analysis and diagnosis of hearing disorders. The identification of pathogenic mutations is frequently a lengthy and laborious process. Existing computational prediction tools have been developed primarily for common diseases and genome-wide analyses, with less focus on deafness. This study proposes a novel approach that focuses on the regions surrounding mutation sites. Mutation sites associated with deafness and their flanking regions of different lengths were extracted from relevant databases and combined into seven distinct segments of different lengths. The information-theoretic features of these segments were computed. Five machine learning algorithms were then used for training, resulting in the construction of a model capable of classifying and predicting deafness-related mutations. For fragments encompassing the 250 bp regions upstream and downstream of the mutations, the average AUC of the five classifiers on the independent test set is 0.89 and the average ACC is 0.85, indicating that the model has a high recognition rate of the pathogenic deafness mutation site. An ensemble approach was also applied to predict variants of uncertain significance (VUS) that may be associated with deafness. These variants were then scored and ranked to assess their likelihood of contributing to the condition.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108321"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hearing impairment is a major global health problem, affecting more than 5 % of the world's population at various ages, from neonates to the elderly. Among the common genetic variations in humans, single nucleotide variations and small insertions or deletions predominate. The study of hearing loss resulting from these variations is proving invaluable in the analysis and diagnosis of hearing disorders. The identification of pathogenic mutations is frequently a lengthy and laborious process. Existing computational prediction tools have been developed primarily for common diseases and genome-wide analyses, with less focus on deafness. This study proposes a novel approach that focuses on the regions surrounding mutation sites. Mutation sites associated with deafness and their flanking regions of different lengths were extracted from relevant databases and combined into seven distinct segments of different lengths. The information-theoretic features of these segments were computed. Five machine learning algorithms were then used for training, resulting in the construction of a model capable of classifying and predicting deafness-related mutations. For fragments encompassing the 250 bp regions upstream and downstream of the mutations, the average AUC of the five classifiers on the independent test set is 0.89 and the average ACC is 0.85, indicating that the model has a high recognition rate of the pathogenic deafness mutation site. An ensemble approach was also applied to predict variants of uncertain significance (VUS) that may be associated with deafness. These variants were then scored and ranked to assess their likelihood of contributing to the condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用突变位点附近的序列信息,对与听力损失相关的变异进行分类和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification and prediction of variants associated with hearing loss using sequence information in the vicinity of mutation sites. Development of a centrosome amplification-associated signature in kidney renal clear cell carcinoma based on multiple machine learning models. In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression. Improving binding affinity prediction by emphasizing local features of drug and protein. Exploring immune gene expression and potential regulatory mechanisms in anaplastic thyroid carcinoma using a combination of single-cell and bulk RNA sequencing data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1