G. Balachandran, S. Ranjith, T. R. Chenthil, G. C. Jagan
{"title":"Facial expression-based emotion recognition across diverse age groups: a multi-scale vision transformer with contrastive learning approach","authors":"G. Balachandran, S. Ranjith, T. R. Chenthil, G. C. Jagan","doi":"10.1007/s10878-024-01241-8","DOIUrl":null,"url":null,"abstract":"<p>Facial expression-based Emotion Recognition (FER) is crucial in human–computer interaction and affective computing, particularly when addressing diverse age groups. This paper introduces the Multi-Scale Vision Transformer with Contrastive Learning (MViT-CnG), an age-adaptive FER approach designed to enhance the accuracy and interpretability of emotion recognition models across different classes. The MViT-CnG model leverages vision transformers and contrastive learning to capture intricate facial features, ensuring robust performance despite diverse and dynamic facial features. By utilizing contrastive learning, the model's interpretability is significantly enhanced, which is vital for building trust in automated systems and facilitating human–machine collaboration. Additionally, this approach enriches the model's capacity to discern shared and distinct features within facial expressions, improving its ability to generalize across different age groups. Evaluations using the FER-2013 and CK + datasets highlight the model's broad generalization capabilities, with FER-2013 covering a wide range of emotions across diverse age groups and CK + focusing on posed expressions in controlled environments. The MViT-CnG model adapts effectively to both datasets, showcasing its versatility and reliability across distinct data characteristics. Performance results demonstrated that the MViT-CnG model achieved superior accuracy across all emotion recognition labels on the FER-2013 dataset with a 99.6% accuracy rate, and 99.5% on the CK + dataset, indicating significant improvements in recognizing subtle facial expressions. Comprehensive evaluations revealed that the model's precision, recall, and F1-score are consistently higher than those of existing models, confirming its robustness and reliability in facial emotion recognition tasks.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"21 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01241-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Facial expression-based Emotion Recognition (FER) is crucial in human–computer interaction and affective computing, particularly when addressing diverse age groups. This paper introduces the Multi-Scale Vision Transformer with Contrastive Learning (MViT-CnG), an age-adaptive FER approach designed to enhance the accuracy and interpretability of emotion recognition models across different classes. The MViT-CnG model leverages vision transformers and contrastive learning to capture intricate facial features, ensuring robust performance despite diverse and dynamic facial features. By utilizing contrastive learning, the model's interpretability is significantly enhanced, which is vital for building trust in automated systems and facilitating human–machine collaboration. Additionally, this approach enriches the model's capacity to discern shared and distinct features within facial expressions, improving its ability to generalize across different age groups. Evaluations using the FER-2013 and CK + datasets highlight the model's broad generalization capabilities, with FER-2013 covering a wide range of emotions across diverse age groups and CK + focusing on posed expressions in controlled environments. The MViT-CnG model adapts effectively to both datasets, showcasing its versatility and reliability across distinct data characteristics. Performance results demonstrated that the MViT-CnG model achieved superior accuracy across all emotion recognition labels on the FER-2013 dataset with a 99.6% accuracy rate, and 99.5% on the CK + dataset, indicating significant improvements in recognizing subtle facial expressions. Comprehensive evaluations revealed that the model's precision, recall, and F1-score are consistently higher than those of existing models, confirming its robustness and reliability in facial emotion recognition tasks.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.