{"title":"Binding mechanism of oligopeptides on solid surface: Assessing the significance of single-molecule approach","authors":"Joanne Lê-Chesnais, Marie Steffenhagen, Christophe Méthivier, Dominique Costa, Daniela Rodriguez, Emmanuel Maisonhaute, Jean-François Lambert, Jessem Landoulsi","doi":"10.1039/d4nr04474f","DOIUrl":null,"url":null,"abstract":"This paper adresses the complementarity and potential disparities between single-molecule and ensemble-average approaches to probe the binding mechanism of oligopeptides on inorganic solids. Specifically, we explore the peptide/gold interface owing to its significance in various topics and its suitability to perform experiments both in model and real conditions. Experimental results show that the studied peptide adopts a lying configuration upon adsorption on the gold surface and interacts through its peptidic links and deprotonated thiolate extremities, in agreement with theoretical predictions. Single-molecule force spectroscopy (SMFS) measurements revealed the existence of a wide panel of adhesion forces, resulting from the interaction between individual peptide moieties and the abundant surface sites. We therefore propose methodological developments for sorting the events of interest to understand the peptide adsorption mechanism. Thermodynamic and kinetic aspects of the peptide adsorption are probed using both static and dynamic force spectroscopy measurements. Specifically, we show the possibility of providing a reasonable estimate of the peptide free energy of adsorption ΔadsG° by exploring the fluctuations of the adhesion work, based on the Jarzynski equality, and by using a parametric Gamma estimator. The proposed approach offers a relevant method for studying the different factors influencing the peptide adsorption and evaluating their impact on ΔadsG° as an alternative to exploring adhesion forces that may lead to misinterpretations. This is illustrated by the comparison of the adsorption of two peptides with specific amino acids substitution. Our method provides insights into the overall mechanim by which peptides interact with the surface and allows an integration of the single-molecule versus ensemble-average points of view.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04474f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper adresses the complementarity and potential disparities between single-molecule and ensemble-average approaches to probe the binding mechanism of oligopeptides on inorganic solids. Specifically, we explore the peptide/gold interface owing to its significance in various topics and its suitability to perform experiments both in model and real conditions. Experimental results show that the studied peptide adopts a lying configuration upon adsorption on the gold surface and interacts through its peptidic links and deprotonated thiolate extremities, in agreement with theoretical predictions. Single-molecule force spectroscopy (SMFS) measurements revealed the existence of a wide panel of adhesion forces, resulting from the interaction between individual peptide moieties and the abundant surface sites. We therefore propose methodological developments for sorting the events of interest to understand the peptide adsorption mechanism. Thermodynamic and kinetic aspects of the peptide adsorption are probed using both static and dynamic force spectroscopy measurements. Specifically, we show the possibility of providing a reasonable estimate of the peptide free energy of adsorption ΔadsG° by exploring the fluctuations of the adhesion work, based on the Jarzynski equality, and by using a parametric Gamma estimator. The proposed approach offers a relevant method for studying the different factors influencing the peptide adsorption and evaluating their impact on ΔadsG° as an alternative to exploring adhesion forces that may lead to misinterpretations. This is illustrated by the comparison of the adsorption of two peptides with specific amino acids substitution. Our method provides insights into the overall mechanim by which peptides interact with the surface and allows an integration of the single-molecule versus ensemble-average points of view.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.