{"title":"Linking root xylem anatomy to tensile strength: insights from four broadleaved tree species in the Hyrcanian forests","authors":"Reza Oladi, Reyhaneh Aliverdikhani, Ehsan Abdi","doi":"10.1007/s11104-024-07148-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>High root tensile strength (RTS) is crucial for tree stability, windthrow resistance, soil reinforcement, and erosion control. However, RTS varies across species, and the underlying causes remain poorly understood. RTS is directly linked to anatomical structure and fiber morphology, which influence its resistance to stress. This study explores the relationship between xylem anatomy and RTS in four broadleaved species—<i>Acer velutinum</i>, <i>Fagus orientalis</i>, <i>Quercus castaneifolia</i>, and <i>Carpinus betulus</i>—from the Hyrcanian forests of Iran.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>RTS was measured, and fiber biometry, including fiber length, width, lumen width, and wall thickness, was quantified on macerated fibers. Vessel lumen fraction was also assessed through microscopic examination of root cross-sections.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p><i>A. velutinum</i> (Persian maple) exhibited the highest RTS, while <i>F. orientalis</i> displayed the lowest. A negative power relationship was observed between root diameter and RTS. Among fiber traits, fiber length and width had the strongest positive influence on RTS. Persian maple, as the species with strongest root, possessed the longest and widest fibers. Conversely, <i>F. orientalis</i>, the weakest one, displayed the shortest and thinnest fibers with the most robust cell walls. The relationship between quantitative vascular features of xylem and RTS was inconclusive, across species.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This study revealed the complex interplay between xylem anatomical traits and RTS. Fiber characteristics, particularly a dense network of long, wide, and more flexible fibers, were found to strengthen root. Further research should explore the interplay of multiple anatomical features to provide a comprehensive understanding of RTS.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"48 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07148-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
High root tensile strength (RTS) is crucial for tree stability, windthrow resistance, soil reinforcement, and erosion control. However, RTS varies across species, and the underlying causes remain poorly understood. RTS is directly linked to anatomical structure and fiber morphology, which influence its resistance to stress. This study explores the relationship between xylem anatomy and RTS in four broadleaved species—Acer velutinum, Fagus orientalis, Quercus castaneifolia, and Carpinus betulus—from the Hyrcanian forests of Iran.
Methods
RTS was measured, and fiber biometry, including fiber length, width, lumen width, and wall thickness, was quantified on macerated fibers. Vessel lumen fraction was also assessed through microscopic examination of root cross-sections.
Results
A. velutinum (Persian maple) exhibited the highest RTS, while F. orientalis displayed the lowest. A negative power relationship was observed between root diameter and RTS. Among fiber traits, fiber length and width had the strongest positive influence on RTS. Persian maple, as the species with strongest root, possessed the longest and widest fibers. Conversely, F. orientalis, the weakest one, displayed the shortest and thinnest fibers with the most robust cell walls. The relationship between quantitative vascular features of xylem and RTS was inconclusive, across species.
Conclusion
This study revealed the complex interplay between xylem anatomical traits and RTS. Fiber characteristics, particularly a dense network of long, wide, and more flexible fibers, were found to strengthen root. Further research should explore the interplay of multiple anatomical features to provide a comprehensive understanding of RTS.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.