Cross-Modal Guided Visual Representation Learning for Social Image Retrieval

Ziyu Guan;Wanqing Zhao;Hongmin Liu;Yuta Nakashima;Noboru Babaguchi;Xiaofei He
{"title":"Cross-Modal Guided Visual Representation Learning for Social Image Retrieval","authors":"Ziyu Guan;Wanqing Zhao;Hongmin Liu;Yuta Nakashima;Noboru Babaguchi;Xiaofei He","doi":"10.1109/TPAMI.2024.3519112","DOIUrl":null,"url":null,"abstract":"Social images are often associated with rich but noisy tags from community contributions. Although social tags can potentially provide valuable semantic training information for image retrieval, existing studies all fail to effectively filter noises by exploiting the cross-modal correlation between image content and tags. The current cross-modal vision-and-language representation learning methods, which selectively attend to the relevant parts of the image and text, show a promising direction. However, they are not suitable for social image retrieval since: (1) they deal with natural text sequences where the relationships between words can be easily captured by language models for cross-modal relevance estimation, while the tags are isolated and noisy; (2) they take (image, text) pair as input, and consequently cannot be employed directly for unimodal social image retrieval. This paper tackles the challenge of utilizing cross-modal interactions to learn precise representations for unimodal retrieval. The proposed framework, dubbed CGVR (Cross-modal Guided Visual Representation), extracts accurate semantic representations of images from noisy tags and transfers this ability to image-only hashing subnetwork by a carefully designed training scheme. To well capture correlated semantics and filter noises, it embeds a priori common-sense relationship among tags into attention computation for joint awareness of textual and visual context. Experiments show that CGVR achieves approximately 8.82 and 5.45 points improvement in MAP over the state-of-the-art on two widely used social image benchmarks. CGVR can serve as a new baseline for the image retrieval community.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 3","pages":"2186-2198"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804591/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social images are often associated with rich but noisy tags from community contributions. Although social tags can potentially provide valuable semantic training information for image retrieval, existing studies all fail to effectively filter noises by exploiting the cross-modal correlation between image content and tags. The current cross-modal vision-and-language representation learning methods, which selectively attend to the relevant parts of the image and text, show a promising direction. However, they are not suitable for social image retrieval since: (1) they deal with natural text sequences where the relationships between words can be easily captured by language models for cross-modal relevance estimation, while the tags are isolated and noisy; (2) they take (image, text) pair as input, and consequently cannot be employed directly for unimodal social image retrieval. This paper tackles the challenge of utilizing cross-modal interactions to learn precise representations for unimodal retrieval. The proposed framework, dubbed CGVR (Cross-modal Guided Visual Representation), extracts accurate semantic representations of images from noisy tags and transfers this ability to image-only hashing subnetwork by a carefully designed training scheme. To well capture correlated semantics and filter noises, it embeds a priori common-sense relationship among tags into attention computation for joint awareness of textual and visual context. Experiments show that CGVR achieves approximately 8.82 and 5.45 points improvement in MAP over the state-of-the-art on two widely used social image benchmarks. CGVR can serve as a new baseline for the image retrieval community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向社会图像检索的跨模态引导视觉表征学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fully-Connected Transformer for Multi-Source Image Fusion RenAIssance: A Survey Into AI Text-to-Image Generation in the Era of Large Model Natural Adversarial Mask for Face Identity Protection in Physical World Multi-Head Encoding for Extreme Label Classification Hierarchical Banzhaf Interaction for General Video-Language Representation Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1