Hui Hu, Lvjiang Meng, Yang Zhou, Yujing Chen, Yecheng Zhou, Bin Xi, Yuanchao Li
{"title":"Mechanochemical Release of 9,10-Diphenylanthracene via Flex-Activation of Its 1,4-Diels–Alder Adduct","authors":"Hui Hu, Lvjiang Meng, Yang Zhou, Yujing Chen, Yecheng Zhou, Bin Xi, Yuanchao Li","doi":"10.1021/acsmacrolett.4c00766","DOIUrl":null,"url":null,"abstract":"Flex-activated mechanophores capable of releasing small molecules utilize bond bending to facilitate their mechanochemical activation without compromising the overall macromolecular architecture, which have great potential in various applications. However, the development of such mechanophores remains underexplored. Here we report a novel flex-activated mechanophore based on the 1,4-Diels–Alder (DA) adduct of 9,10-diphenylanthracene (DPA) with acetylenedicarboxylate (ADC). Compression of the mechanophore-crosslinked polymer networks mechanochemically activates the weakly fluorescent DPA-ADC mechanophores to undergo a retro-DA reaction in accompany with the release of highly fluorescent DPA molecules (quantum yield close to unity), as confirmed by fluorescence spectroscopy and gas chromatography–mass spectrometry (GC-MS) analysis. As a new member of the small family of flex-activated mechanophores, this fluorogenic DPA-ADC mechanophore possesses promising applications in stress sensing and damage detection.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"55 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Flex-activated mechanophores capable of releasing small molecules utilize bond bending to facilitate their mechanochemical activation without compromising the overall macromolecular architecture, which have great potential in various applications. However, the development of such mechanophores remains underexplored. Here we report a novel flex-activated mechanophore based on the 1,4-Diels–Alder (DA) adduct of 9,10-diphenylanthracene (DPA) with acetylenedicarboxylate (ADC). Compression of the mechanophore-crosslinked polymer networks mechanochemically activates the weakly fluorescent DPA-ADC mechanophores to undergo a retro-DA reaction in accompany with the release of highly fluorescent DPA molecules (quantum yield close to unity), as confirmed by fluorescence spectroscopy and gas chromatography–mass spectrometry (GC-MS) analysis. As a new member of the small family of flex-activated mechanophores, this fluorogenic DPA-ADC mechanophore possesses promising applications in stress sensing and damage detection.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.