Edge‐Induced Synergy of Ni‐Ni Defects in NiFe Layered‐Double‐Hydroxide for Electrocatalytic Water Oxidation Reaction

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-12-17 DOI:10.1002/smll.202408266
Rongrong Zhang, Qilong Wu, Yun Han, Yaowen Zhang, Xiaofeng Wu, Jianrong Zeng, Keke Huang, Aijun Du, Jun Chen, Dong Zhou, Xiangdong Yao
{"title":"Edge‐Induced Synergy of Ni‐Ni Defects in NiFe Layered‐Double‐Hydroxide for Electrocatalytic Water Oxidation Reaction","authors":"Rongrong Zhang, Qilong Wu, Yun Han, Yaowen Zhang, Xiaofeng Wu, Jianrong Zeng, Keke Huang, Aijun Du, Jun Chen, Dong Zhou, Xiangdong Yao","doi":"10.1002/smll.202408266","DOIUrl":null,"url":null,"abstract":"Defect engineering is widely regarded as a promising strategy to enhance the performance of electrocatalysts for water splitting. In this work, defective NiFe layered double hydroxide (NiFe LDH) with a high density of edge sites (edge‐rich NiFe LDH) is synthesized via a simple reduction process during the early stages of nucleation. The introduction of edges into oxygen evolution reaction (OER) catalysts modulates the electronic structure of the active sites. X‐ray absorption spectroscopy (XAS) analyses revealed that the edges facilitated the formation of unsaturated Ni‐Ni coordination, which is crucial for promoting the deprotonation of the OH<jats:sup>*</jats:sup> intermediate. Consequently, the edge‐rich NiFe LDH exhibited a significantly lower overpotential of 228 mV to achieve a current density of 10 mA cm⁻<jats:sup>2</jats:sup>, compared to 275 mV for pristine NiFe LDH. The assembled membrane electrode can reach a current density of 1000 mA cm⁻<jats:sup>2</jats:sup> at a cell voltage of 2.5 V. This study highlights the role of edge effects in defect engineering to enhance OER activity and provides valuable theoretical insights for the design of efficient electrocatalysts.","PeriodicalId":228,"journal":{"name":"Small","volume":"244 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408266","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Defect engineering is widely regarded as a promising strategy to enhance the performance of electrocatalysts for water splitting. In this work, defective NiFe layered double hydroxide (NiFe LDH) with a high density of edge sites (edge‐rich NiFe LDH) is synthesized via a simple reduction process during the early stages of nucleation. The introduction of edges into oxygen evolution reaction (OER) catalysts modulates the electronic structure of the active sites. X‐ray absorption spectroscopy (XAS) analyses revealed that the edges facilitated the formation of unsaturated Ni‐Ni coordination, which is crucial for promoting the deprotonation of the OH* intermediate. Consequently, the edge‐rich NiFe LDH exhibited a significantly lower overpotential of 228 mV to achieve a current density of 10 mA cm⁻2, compared to 275 mV for pristine NiFe LDH. The assembled membrane electrode can reach a current density of 1000 mA cm⁻2 at a cell voltage of 2.5 V. This study highlights the role of edge effects in defect engineering to enhance OER activity and provides valuable theoretical insights for the design of efficient electrocatalysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺陷工程被广泛认为是提高水分离电催化剂性能的一种有前途的策略。在这项工作中,在成核的早期阶段,通过简单的还原过程合成了具有高密度边缘位点(富边缘 NiFe LDH)的缺陷 NiFe 层状双氢氧化物(NiFe LDH)。在氧进化反应(OER)催化剂中引入边缘会改变活性位点的电子结构。X 射线吸收光谱(XAS)分析表明,边缘促进了不饱和 Ni-Ni 配位的形成,这对于促进 OH* 中间体的去质子化至关重要。因此,与原始镍铁合金 LDH 的 275 mV 电流密度相比,富边缘镍铁合金 LDH 在达到 10 mA cm-2 电流密度时的过电位明显降低,仅为 228 mV。在电池电压为 2.5 V 时,组装好的膜电极可达到 1000 mA cm-2 的电流密度。这项研究强调了边缘效应在缺陷工程中对提高 OER 活性的作用,并为设计高效电催化剂提供了宝贵的理论启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Construction of CdIn2S4/MXene‐TiO2 Z‐Scheme Heterojunction for High‐Gain Organic Photoelectrochemical Transistor to Achieve Maximized Transconductance at Zero Bias Remodel Heterogeneous Electrical Microenvironment at Nano‐Scale Interface Optimizes Osteogenesis by Coupling of Immunomodulation and Angiogenesis Adaptive Phase-Locked E-Skin for Sports Physiology and Medicine Harmonizing Wide Voltage Window and High Energy Density toward Asymmetric All-Solid-State Supercapacitor Enhanced Performance of Sn-Based Perovskite Photodetectors Through Double-Sided Passivation for Near-Infrared Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1