Electronic Regulation of Pt for Low-Temperature Hydrogen Generation from Methanol and Water

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-12-16 DOI:10.1021/acssuschemeng.4c07671
Qiankang Liao, You Wang, Chen Chen, Sai Zhang
{"title":"Electronic Regulation of Pt for Low-Temperature Hydrogen Generation from Methanol and Water","authors":"Qiankang Liao, You Wang, Chen Chen, Sai Zhang","doi":"10.1021/acssuschemeng.4c07671","DOIUrl":null,"url":null,"abstract":"The aqueous-phase reforming of the methanol (APRM) reaction provides a potential approach for hydrogen (H<sub>2</sub>) storage and transportation. However, the limited capacity of Pt nanocatalysts for H<sub>2</sub>O activation leads to the drawback of requiring high reaction temperatures (&gt;200 °C) to achieve efficient H<sub>2</sub> generation through the APRM reaction. Herein, the electronic density of Pt nanocatalysts has been regulated by the phase of the Al<sub>2</sub>O<sub>3</sub> supports. Mechanism analysis revealed that the α-Al<sub>2</sub>O<sub>3</sub> supports with larger lattice fringe spacing resulted in an enhanced electronic density of Pt nanocatalysts, thereby enabling the effective adsorption and activation of H<sub>2</sub>O. Consequently, the Pt/α-Al<sub>2</sub>O<sub>3</sub> catalysts exhibited a TOF value of 69.8 h<sup>–1</sup> at 30 °C for H<sub>2</sub> generation via APRM reaction. Notably, this H<sub>2</sub> generation rate even suppressed that achieved by previous state-of-the-art homogeneous catalysts. This finding presents a promising avenue toward flexible hydrogen utilization.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"26 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c07671","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aqueous-phase reforming of the methanol (APRM) reaction provides a potential approach for hydrogen (H2) storage and transportation. However, the limited capacity of Pt nanocatalysts for H2O activation leads to the drawback of requiring high reaction temperatures (>200 °C) to achieve efficient H2 generation through the APRM reaction. Herein, the electronic density of Pt nanocatalysts has been regulated by the phase of the Al2O3 supports. Mechanism analysis revealed that the α-Al2O3 supports with larger lattice fringe spacing resulted in an enhanced electronic density of Pt nanocatalysts, thereby enabling the effective adsorption and activation of H2O. Consequently, the Pt/α-Al2O3 catalysts exhibited a TOF value of 69.8 h–1 at 30 °C for H2 generation via APRM reaction. Notably, this H2 generation rate even suppressed that achieved by previous state-of-the-art homogeneous catalysts. This finding presents a promising avenue toward flexible hydrogen utilization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲醇和水低温制氢过程中的铂电子调控
甲醇的水相重整(APRM)反应为氢(H2)的储存和运输提供了一种潜在的方法。然而,由于铂纳米催化剂活化 H2O 的能力有限,因此需要较高的反应温度(200 °C)才能通过 APRM 反应高效生成 H2。在这里,铂纳米催化剂的电子密度受 Al2O3 支持物相的调节。机理分析表明,晶格边缘间距较大的 α-Al2O3 载体可提高铂纳米催化剂的电子密度,从而实现 H2O 的有效吸附和活化。因此,Pt/α-Al2O3 催化剂在 30 °C 下通过 APRM 反应生成 H2 的 TOF 值为 69.8 h-1。值得注意的是,这一 H2 生成率甚至低于之前最先进的均相催化剂。这一发现为灵活利用氢气提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Enhancing Oxygen Reduction Reaction Performance Through Abundant Single Fe Atoms for Advanced Zinc–Air Batteries Scalable Preparation and Precise Control of Carbon Materials via Molten Salt Liquid Seal Strategy in Air Oil-Based Fast Ultralow Friction Achieved by Semisolid Lubricant Domained by Poly-α-Olefins-Subnanowire–Stearic Acid at Steel/PTFE Interface Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1