Oil-Based Fast Ultralow Friction Achieved by Semisolid Lubricant Domained by Poly-α-Olefins-Subnanowire–Stearic Acid at Steel/PTFE Interface

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-12-24 DOI:10.1021/acssuschemeng.4c08069
Runhao Zheng, Liqiang Zhang, Liucheng Wang, Changhe Du, Kunpeng Li, Shoukui Gao, Linxu Fang, Qiang Wang, Daoai Wang
{"title":"Oil-Based Fast Ultralow Friction Achieved by Semisolid Lubricant Domained by Poly-α-Olefins-Subnanowire–Stearic Acid at Steel/PTFE Interface","authors":"Runhao Zheng, Liqiang Zhang, Liucheng Wang, Changhe Du, Kunpeng Li, Shoukui Gao, Linxu Fang, Qiang Wang, Daoai Wang","doi":"10.1021/acssuschemeng.4c08069","DOIUrl":null,"url":null,"abstract":"Liquid lubricants can reduce the friction and wear of two relative moving surfaces. However, there are still great challenges to achieve anticreep and superlubricity of liquid lubricants at the same time. In this study, a novel semisolid lubricant (P<sub>30</sub>SSA) was designed by fixing poly-α-olefins 30 (PAO30) base oil in a three-dimensional network structure constructed by subnanowires (SNW) and stearic acid (SA), avoiding the creep problem of base oil and achieving ultralow friction (0.006–0009) at steel/polytetrafluoroethylene (PTFE) interfaces in a short period (∼6 s). Compared with dry friction, the wear rate of the PTFE was reduced by 98%. Moreover, the friction coefficient remains below 0.01 after more than 150,000 cycles. The ultralow friction behavior is attributed to the increasing bearing ability caused by the three-dimensional network structure in P<sub>30</sub>SSA, the reduced internal friction of P<sub>30</sub>SSA generated by the shear thinning of the lubricant during the friction process, and the physisorption film formed on the surface of friction pairs. The P<sub>30</sub>SSA solves the problem of liquid lubricant creeping and achieves ultralow friction on the surface of steel/PTFE. This work opens up a new direction for semisolid lubricants and provides a new idea for the study of the ultralow friction mechanism.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"25 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08069","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid lubricants can reduce the friction and wear of two relative moving surfaces. However, there are still great challenges to achieve anticreep and superlubricity of liquid lubricants at the same time. In this study, a novel semisolid lubricant (P30SSA) was designed by fixing poly-α-olefins 30 (PAO30) base oil in a three-dimensional network structure constructed by subnanowires (SNW) and stearic acid (SA), avoiding the creep problem of base oil and achieving ultralow friction (0.006–0009) at steel/polytetrafluoroethylene (PTFE) interfaces in a short period (∼6 s). Compared with dry friction, the wear rate of the PTFE was reduced by 98%. Moreover, the friction coefficient remains below 0.01 after more than 150,000 cycles. The ultralow friction behavior is attributed to the increasing bearing ability caused by the three-dimensional network structure in P30SSA, the reduced internal friction of P30SSA generated by the shear thinning of the lubricant during the friction process, and the physisorption film formed on the surface of friction pairs. The P30SSA solves the problem of liquid lubricant creeping and achieves ultralow friction on the surface of steel/PTFE. This work opens up a new direction for semisolid lubricants and provides a new idea for the study of the ultralow friction mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Enhancing Oxygen Reduction Reaction Performance Through Abundant Single Fe Atoms for Advanced Zinc–Air Batteries Scalable Preparation and Precise Control of Carbon Materials via Molten Salt Liquid Seal Strategy in Air Oil-Based Fast Ultralow Friction Achieved by Semisolid Lubricant Domained by Poly-α-Olefins-Subnanowire–Stearic Acid at Steel/PTFE Interface Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1