{"title":"Anion-coordination- and π-π-stacking-interaction-driven assembly of a complex Frank-Kasper structure","authors":"Zhu Zhuo, Zi-Ang Nan, Wen-Zheng Fu, Wei Wang, Guo-Ling Li, Ming-Yan Wu, Maochun Hong, You-Gui Huang","doi":"10.1016/j.chempr.2024.11.009","DOIUrl":null,"url":null,"abstract":"Constructing artificial sophisticated architectures from simple small-molecular subunits by cooperative interactions remains one of the most formidable challenges. Herein, we report a complex supramolecular structure, {{[CoL(SCN)]<sub>20</sub>}{[CoL(SCN)]<sub>24</sub>}<sub>3</sub>(SO<sub>4</sub>)<sub>23</sub>(HSO<sub>4</sub>)<sub>46</sub>}·246(CH<sub>3</sub>CN) (<strong>1</strong>), that arises from the assembly of [CoL(SCN)]<sup>+</sup> with SO<sub>4</sub><sup>2−</sup> and HSO<sub>4</sub><sup>−</sup> (L = tris(2-benzimidazolylmethyl)amine) under solvothermal condition. The crystallization of compound <strong>1</strong> is driven by the cooperation of the <em>π-π</em> stacking interactions between [CoL(SCN)]<sup>+</sup> cations and the hydrogen bonds between [CoL(SCN)]<sup>+</sup> and SO<sub>4</sub><sup>2−</sup> and HSO<sub>4</sub><sup>−</sup>. [CoL(SCN)]<sup>+</sup> cations self-associate through intermolecular <em>π-π</em> stacking interactions to create two <em>π</em>-stacked polyhedral 5<sup>12</sup>-{[CoL(SCN)]<sub>20</sub>} dodecahedra and 5<sup>12</sup>6<sup>2</sup>-{[CoL(SCN)]<sub>24</sub>} tetrakaidekahedra. These two <em>π</em>-stacked polyhedral subunits coexist in the same lattice in a 1:3 ratio and coordinate with SO<sub>4</sub><sup>2−</sup> and HSO<sub>4</sub><sup>−</sup>, resulting in a complex Frank-Kasper (FK) A15 structure. This research demonstrates that small-molecular scaffolds can assemble into sophisticated architectures and creates exciting perspectives for constructing sophisticated clathrate structures from simple small molecules.","PeriodicalId":268,"journal":{"name":"Chem","volume":"30 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.11.009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Constructing artificial sophisticated architectures from simple small-molecular subunits by cooperative interactions remains one of the most formidable challenges. Herein, we report a complex supramolecular structure, {{[CoL(SCN)]20}{[CoL(SCN)]24}3(SO4)23(HSO4)46}·246(CH3CN) (1), that arises from the assembly of [CoL(SCN)]+ with SO42− and HSO4− (L = tris(2-benzimidazolylmethyl)amine) under solvothermal condition. The crystallization of compound 1 is driven by the cooperation of the π-π stacking interactions between [CoL(SCN)]+ cations and the hydrogen bonds between [CoL(SCN)]+ and SO42− and HSO4−. [CoL(SCN)]+ cations self-associate through intermolecular π-π stacking interactions to create two π-stacked polyhedral 512-{[CoL(SCN)]20} dodecahedra and 51262-{[CoL(SCN)]24} tetrakaidekahedra. These two π-stacked polyhedral subunits coexist in the same lattice in a 1:3 ratio and coordinate with SO42− and HSO4−, resulting in a complex Frank-Kasper (FK) A15 structure. This research demonstrates that small-molecular scaffolds can assemble into sophisticated architectures and creates exciting perspectives for constructing sophisticated clathrate structures from simple small molecules.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.