Quantum Anomalous Layer Hall Effect in Realistic van der Waals Heterobilayers

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-12-17 DOI:10.1021/acs.nanolett.4c05310
Yuping Tian, Xiangru Kong, Cui Jiang, Huai-Jin Zhang, Wei-Jiang Gong
{"title":"Quantum Anomalous Layer Hall Effect in Realistic van der Waals Heterobilayers","authors":"Yuping Tian, Xiangru Kong, Cui Jiang, Huai-Jin Zhang, Wei-Jiang Gong","doi":"10.1021/acs.nanolett.4c05310","DOIUrl":null,"url":null,"abstract":"The quantum anomalous layer Hall effect (QALHE), characterized by the precise control of the quantum anomalous Hall effect on different layers due to spin-layer-chirality coupling in van der Waals (vdW) layered materials, is of great importance in both fundamental physics and nanodevices. In this work, through the analysis of a low-energy effective model for vdW heterobilayers under biaxial strain, we propose the QALHE in valleytronic materials for the first time. The spin-layer-locked edge states and Chern numbers in heterobilayers give rise to dissipationless currents localized in specific layers, realizing the long-sought QALHE in heterobilayers. The switch of the chirality of edge states and Chern numbers in heterobilayer systems can be achieved by applying a biaxial strain. We have validated this mechanism in a series of realistic valleytronic materials, including VSi<sub>2</sub>N<sub>4</sub>/VSiCN<sub>4</sub> and RuCl<sub>2</sub>/FeCl<sub>2</sub> heterobilayers. Our work reveals a new mechanism for achieving the QALHE with promising applications in spintronics and quantum layertronics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"115 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05310","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The quantum anomalous layer Hall effect (QALHE), characterized by the precise control of the quantum anomalous Hall effect on different layers due to spin-layer-chirality coupling in van der Waals (vdW) layered materials, is of great importance in both fundamental physics and nanodevices. In this work, through the analysis of a low-energy effective model for vdW heterobilayers under biaxial strain, we propose the QALHE in valleytronic materials for the first time. The spin-layer-locked edge states and Chern numbers in heterobilayers give rise to dissipationless currents localized in specific layers, realizing the long-sought QALHE in heterobilayers. The switch of the chirality of edge states and Chern numbers in heterobilayer systems can be achieved by applying a biaxial strain. We have validated this mechanism in a series of realistic valleytronic materials, including VSi2N4/VSiCN4 and RuCl2/FeCl2 heterobilayers. Our work reveals a new mechanism for achieving the QALHE with promising applications in spintronics and quantum layertronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现实范德华杂层中的量子反常层霍尔效应
量子反常层霍尔效应(QALHE)在基础物理和纳米器件中都具有重要意义,其特点是由于范德华(vdW)层状材料中的自旋层-手性耦合而精确控制不同层上的量子反常霍尔效应。本文通过分析双轴应变下vdW异质层的低能有效模型,首次在谷电子材料中提出了QALHE。自旋锁层的边缘态和异质层中的陈氏数产生了定位于特定层的无耗散电流,实现了异质层中长期追求的QALHE。通过施加双轴应变,可以实现异质层体系中边缘态和陈恩数的手性转换。我们已经在一系列现实的谷电子材料中验证了这种机制,包括VSi2N4/VSiCN4和RuCl2/FeCl2异质层。我们的工作揭示了实现QALHE的新机制,在自旋电子学和量子层电子学中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Electric-Field Tunable Anisotropic g-Factor Induced by Spin Pumping Strengthening Antisense Oligonucleotide-Mediated Anti-Tumor Immunity via Metal–Organic Framework Nanoparticles B-Site Engineering in Ruddlesden–Popper Perovskites (A2BO4) for H2O2 Production with 4.85% of Solar-to-Chemical Efficiency Self-Consistent Electrostatic Modeling of Gated Narrow-Gap Topological Insulators. Small-Scale Insight into Uniform Deformability and Softening Resistance of Refractory High-Entropy Alloy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1