{"title":"Stable Na/K–S Batteries with Conductive Organosulfur Polymer Microcages as Cathodes","authors":"Xian Zeng, Zi-Jian Yi, Guo-Yu Zhu, Ning-Ning Zhu, Yan-Fei Chen, Ji-Miao Xiao, Run-Hang Chen, Menghua Yang, Hongchang Jin, De-Shan Bin, Dan Li","doi":"10.1021/jacs.4c11845","DOIUrl":null,"url":null,"abstract":"Na–S and K–S batteries, with high-energy density, using naturally more abundant and affordable metals compared with rare resources like Li, Co, and Ni elements, have inspired intense research interest. However, the sulfur cathodes for Na/K storage are plagued by soluble polysulfide shuttling, larger volumetric deformation, and sluggish redox kinetics. Here, we report that a conductive organosulfur polymer microcage, fabricated facilely with the microbe and elemental sulfur as precursors, can effectively address these issues for stable high-capacity Na–S and K–S batteries. The covalently bonded short-chain sulfur species enable superior reaction kinetics and avoid soluble polysulfide formation. The microcage architecture with built-in cavities buffers the volume deformation to ensure a resilient electrode. The resultant conductive organosulfur polymer can promise a combination of high capacity and extraordinary cyclability with a promising rate and Coulombic efficiency. Especially, as a K–S battery cathode, it could deliver a high capacity of 1206.5 mAh g<sup>–1</sup> together with an extraordinary cyclability (>99% capacity retention over 1100 cycles), which is much better than that of state-of-the-art sulfur cathodes. This work envisions new perspectives on building conductive organosulfur cathode materials with high performance via a simple and feasible protocol.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"87 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11845","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Na–S and K–S batteries, with high-energy density, using naturally more abundant and affordable metals compared with rare resources like Li, Co, and Ni elements, have inspired intense research interest. However, the sulfur cathodes for Na/K storage are plagued by soluble polysulfide shuttling, larger volumetric deformation, and sluggish redox kinetics. Here, we report that a conductive organosulfur polymer microcage, fabricated facilely with the microbe and elemental sulfur as precursors, can effectively address these issues for stable high-capacity Na–S and K–S batteries. The covalently bonded short-chain sulfur species enable superior reaction kinetics and avoid soluble polysulfide formation. The microcage architecture with built-in cavities buffers the volume deformation to ensure a resilient electrode. The resultant conductive organosulfur polymer can promise a combination of high capacity and extraordinary cyclability with a promising rate and Coulombic efficiency. Especially, as a K–S battery cathode, it could deliver a high capacity of 1206.5 mAh g–1 together with an extraordinary cyclability (>99% capacity retention over 1100 cycles), which is much better than that of state-of-the-art sulfur cathodes. This work envisions new perspectives on building conductive organosulfur cathode materials with high performance via a simple and feasible protocol.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.