Metal Nanoclusters for Interface Engineering and Improved Photovoltaic Performance in Organic Solar Cells

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-12-16 DOI:10.1021/acsnano.4c12256
Yousuf Alishan, Alvin Joseph, Anitha B. Pillai, Ravari Kandy Aparna, Ranjini Sarkar, Sudip Chakraborty, Sukhendu Mandal, Manoj A. G. Namboothiry
{"title":"Metal Nanoclusters for Interface Engineering and Improved Photovoltaic Performance in Organic Solar Cells","authors":"Yousuf Alishan, Alvin Joseph, Anitha B. Pillai, Ravari Kandy Aparna, Ranjini Sarkar, Sudip Chakraborty, Sukhendu Mandal, Manoj A. G. Namboothiry","doi":"10.1021/acsnano.4c12256","DOIUrl":null,"url":null,"abstract":"Copper nanoclusters (Cu NCs), synthesized by a one-pot synthesis method, were theoretically shown to exhibit a dipole moment and cause work function modification on a surface as observed from Kelvin probe measurement. Here, Cu NCs were used as an interfacial modifier in organic solar cells (OSCs). The effective engineering of the electron transporting layer/active layer interface using Cu NCs resulted in improved photovoltaic performance in fullerene and non-fullerene based OSCs. On insertion of Cu NCs, the best power conversion efficiency (PCE) obtained for the non-fullerene based system was 15.83% compared to 14.22% for the control device, while the PCE increased from 7.79% to 8.62% for the fullerene based system. The interface modification resulted in reduced recombination losses and charge accumulation at the interfaces. The improved performance in Cu NC interfaced devices is attributed to work function modification, enabling reduced energy barrier and enhanced charge collection.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"6 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12256","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Copper nanoclusters (Cu NCs), synthesized by a one-pot synthesis method, were theoretically shown to exhibit a dipole moment and cause work function modification on a surface as observed from Kelvin probe measurement. Here, Cu NCs were used as an interfacial modifier in organic solar cells (OSCs). The effective engineering of the electron transporting layer/active layer interface using Cu NCs resulted in improved photovoltaic performance in fullerene and non-fullerene based OSCs. On insertion of Cu NCs, the best power conversion efficiency (PCE) obtained for the non-fullerene based system was 15.83% compared to 14.22% for the control device, while the PCE increased from 7.79% to 8.62% for the fullerene based system. The interface modification resulted in reduced recombination losses and charge accumulation at the interfaces. The improved performance in Cu NC interfaced devices is attributed to work function modification, enabling reduced energy barrier and enhanced charge collection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于有机太阳能电池界面工程和提高光伏性能的金属纳米团簇
通过一锅合成法合成的纳米铜簇(Cu NCs)在理论上显示出偶极矩,并通过开尔文探针测量法观察到其对表面功函数的改变。在这里,Cu NCs 被用作有机太阳能电池(OSCs)的界面修饰剂。使用 Cu NCs 对电子传输层/活性层界面进行有效的工程设计,提高了基于富勒烯和非富勒烯的有机太阳能电池的光伏性能。插入 Cu NC 后,非富勒烯基系统的最佳功率转换效率(PCE)为 15.83%,而对照器件为 14.22%;富勒烯基系统的 PCE 从 7.79% 提高到 8.62%。界面改性降低了界面上的重组损耗和电荷积累。Cu NC 界面器件性能的提高归功于功函数的改变,从而降低了能量势垒,增强了电荷收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Thrombospondin-1 Small Interfering RNA-Loaded Lipid Nanoparticles Inhibiting Intimal Hyperplasia of Electrospun Polycaprolactone Vascular Grafts Graphene-Assisted Electron-Based Imaging of Individual Organic and Biological Macromolecules: Structure and Transient Dynamics Integrated Oxygen-Constraining Strategy for Ni-Rich Layered Oxide Cathodes Nanoscale Balance of Energy Loss and Quantum Efficiency for High-Efficiency Polythiophene-Based Organic Solar Cells Giant Colloidal Quantum Dot/α-Ga2O3 Heterojunction for High Performance UV-Vis-IR Broadband Photodetector.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1