Smart Packaging with Disposable NFC-enabled Wireless Gas Sensors for Monitoring Food Spoilage

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2024-12-16 DOI:10.1021/acssensors.4c02510
Atharv Naik, Hong Seok Lee, Jack Herrington, Giandrin Barandun, Genevieve Flock, Firat Güder, Laura Gonzalez-Macia
{"title":"Smart Packaging with Disposable NFC-enabled Wireless Gas Sensors for Monitoring Food Spoilage","authors":"Atharv Naik, Hong Seok Lee, Jack Herrington, Giandrin Barandun, Genevieve Flock, Firat Güder, Laura Gonzalez-Macia","doi":"10.1021/acssensors.4c02510","DOIUrl":null,"url":null,"abstract":"Gas sensors present an alternative to traditional off-package food quality assessment, due to their high sensitivity and fast response without the need of sample pretreatment. The safe integration of gas sensors into packaging without compromising sensitivity, response rate, and stability, however, remains a challenge. Such packaging integration of spoilage sensors is crucial for preventing food waste and transitioning toward more sustainable supply chains. Here, we demonstrate a wide-ranging solution to enable the use of gas sensors for the continuous monitoring of food spoilage, building upon our previous work on paper-based electrical gas sensors (PEGS). By comparing various materials commonly used in the food industry, we analyze the optimal membrane to encapsulate PEGS for packaging integration. Focusing on spinach as a high-value crop, we assess the feasibility of PEGS to monitor the gases released during its spoilage at low and room temperatures. Finally, we integrated the sensors with wireless communication and batteryless electronics, creating a user-friendly system to evaluate the spoilage of spinach, operated by a smartphone via near-field communication (NFC). The work reported here provides an alternative approach that surpasses traditional on-site and in-line monitoring, ensuring comprehensive monitoring of food shelf life.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"60 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gas sensors present an alternative to traditional off-package food quality assessment, due to their high sensitivity and fast response without the need of sample pretreatment. The safe integration of gas sensors into packaging without compromising sensitivity, response rate, and stability, however, remains a challenge. Such packaging integration of spoilage sensors is crucial for preventing food waste and transitioning toward more sustainable supply chains. Here, we demonstrate a wide-ranging solution to enable the use of gas sensors for the continuous monitoring of food spoilage, building upon our previous work on paper-based electrical gas sensors (PEGS). By comparing various materials commonly used in the food industry, we analyze the optimal membrane to encapsulate PEGS for packaging integration. Focusing on spinach as a high-value crop, we assess the feasibility of PEGS to monitor the gases released during its spoilage at low and room temperatures. Finally, we integrated the sensors with wireless communication and batteryless electronics, creating a user-friendly system to evaluate the spoilage of spinach, operated by a smartphone via near-field communication (NFC). The work reported here provides an alternative approach that surpasses traditional on-site and in-line monitoring, ensuring comprehensive monitoring of food shelf life.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用一次性 NFC 无线气体传感器监测食品变质的智能包装
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Flexible Site-Specific Labeling-Mediated Self-Assembly Sensor Based on Quantum Dots and LUMinescent AntiBody Sensor for Duplexed Detection of Antibodies Correction to “Fluorescence Sensing Technologies for Ophthalmic Diagnosis” Plug-In Design of the Microneedle Electrode Array for Multi-Parameter Biochemical Sensing in Gouty Arthritis W/Mo/Cr Doping Modulates the Negative–Positive Inversion Gas Sensing Behavior of VO2(M1) Infrared Spectroscopic Electronic Noses: An Innovative Approach for Exhaled Breath Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1