Molecular Engineering to Construct MoS2 with Expanded Interlayer Spacing and Enriched 1T Phase for “Rocking-Chair” Aqueous Calcium-Ion Pouch Cells

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-12-16 DOI:10.1021/acsnano.4c11147
Wenhao Wang, Wenwei Zhang, Ruohan Yu, Fan Qiao, Jilin Wang, Junjun Wang, Qinyou An
{"title":"Molecular Engineering to Construct MoS2 with Expanded Interlayer Spacing and Enriched 1T Phase for “Rocking-Chair” Aqueous Calcium-Ion Pouch Cells","authors":"Wenhao Wang, Wenwei Zhang, Ruohan Yu, Fan Qiao, Jilin Wang, Junjun Wang, Qinyou An","doi":"10.1021/acsnano.4c11147","DOIUrl":null,"url":null,"abstract":"The moderate working voltage and high capacity of transition metal dichalcogenides (TMDs) make them promising anode materials for aqueous calcium-ion batteries (ACIBs). However, the large radius and two charges of Ca<sup>2+</sup> cause TMDs to exhibit poor performance in ACIBs. Therefore, effective regulation strategies are crucial for enabling the application of TMDs in ACIBs. Herein, MoS<sub>2</sub> with expanded interlayer spacing and an enriched 1T phase (ES-1T-MoS<sub>2</sub>) is constructed by molecular engineering and reported as an anode material for ACIBs. Molecular engineering increases the capacity of MoS<sub>2</sub> from 29.4 to 91.2 mAh g<sup>–1</sup> and improves its rate performance from 20 to 76.1 mAh g<sup>–1</sup> at 2.0 A g<sup>–1</sup>. ES-1T-MoS<sub>2</sub> also shows a −20 to 50 °C wide temperature working capability. Furthermore, the capacity improvement reasons and the calcium storage mechanism of ES-1T-MoS<sub>2</sub> are revealed through density functional theory calculations and <i>in situ</i>/<i>ex situ</i> characterizations. Finally, a “rocking-chair” aqueous calcium-ion pouch cell with a Prussian blue analogue cathode and ES-1T-MoS<sub>2</sub> anode is assembled. The pouch cell exhibits a life of 150 cycles with over 90.8% capacity retention at 0 and 25 °C. This work demonstrates that molecular engineering is an effective strategy to improve the calcium storage performance of TMDs and promotes the advancement of ACIBs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"10 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11147","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The moderate working voltage and high capacity of transition metal dichalcogenides (TMDs) make them promising anode materials for aqueous calcium-ion batteries (ACIBs). However, the large radius and two charges of Ca2+ cause TMDs to exhibit poor performance in ACIBs. Therefore, effective regulation strategies are crucial for enabling the application of TMDs in ACIBs. Herein, MoS2 with expanded interlayer spacing and an enriched 1T phase (ES-1T-MoS2) is constructed by molecular engineering and reported as an anode material for ACIBs. Molecular engineering increases the capacity of MoS2 from 29.4 to 91.2 mAh g–1 and improves its rate performance from 20 to 76.1 mAh g–1 at 2.0 A g–1. ES-1T-MoS2 also shows a −20 to 50 °C wide temperature working capability. Furthermore, the capacity improvement reasons and the calcium storage mechanism of ES-1T-MoS2 are revealed through density functional theory calculations and in situ/ex situ characterizations. Finally, a “rocking-chair” aqueous calcium-ion pouch cell with a Prussian blue analogue cathode and ES-1T-MoS2 anode is assembled. The pouch cell exhibits a life of 150 cycles with over 90.8% capacity retention at 0 and 25 °C. This work demonstrates that molecular engineering is an effective strategy to improve the calcium storage performance of TMDs and promotes the advancement of ACIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过分子工程构建具有扩展层间距和丰富 1T 相的 MoS2,用于 "摇椅式 "钙离子水袋细胞
过渡金属二钙化物(TMDs)具有适中的工作电压和较高的容量,使其成为水性钙离子电池(ACIBs)的理想阳极材料。然而,Ca2+ 的大半径和双电荷导致 TMD 在 ACIB 中表现不佳。因此,有效的调节策略对 TMD 在 ACIB 中的应用至关重要。本文通过分子工程构建了具有扩展层间距和富集 1T 相的 MoS2(ES-1T-MoS2),并将其作为 ACIB 的阳极材料进行了报道。分子工程将 MoS2 的容量从 29.4 mAh g-1 提高到 91.2 mAh g-1,并将其在 2.0 A g-1 时的速率性能从 20 mAh g-1 提高到 76.1 mAh g-1。ES-1T-MoS2 还具有 -20 至 50 °C 宽温工作能力。此外,通过密度泛函理论计算和原位/原位表征,揭示了 ES-1T-MoS2 容量提高的原因和钙储存机制。最后,还组装了一个带有普鲁士蓝类似阴极和 ES-1T-MoS2 阳极的 "摇椅式 "水溶液钙离子袋电池。在 0 ℃ 和 25 ℃ 温度条件下,钙离子袋电池的寿命为 150 个循环,容量保持率超过 90.8%。这项工作表明,分子工程是改善 TMDs 钙储存性能的有效策略,并促进了 ACIBs 的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称产品信息其他信息采购帮参考价格
阿拉丁 Ca(OTF)2
阿拉丁 (NH4)6Mo7O24·4H2O
阿拉丁 thiourea
阿拉丁 CTAB
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Giant Purcell Broadening and Lamb Shift for DNA-Assembled Near-Infrared Quantum Emitters Atomic Gap-State Engineering of MoS2 for Alkaline Water and Seawater Splitting Rational Design of Dual-Targeted Nanomedicines for Enhanced Vascular Permeability in Low-Permeability Tumors Shaping the Emission Directivity of Single Quantum Dots in Dielectric Nanodisks Exploiting Mie Resonances Capacitorless Dynamic Random Access Memory with 2D Transistors by One-Step Transfer of van der Waals Dielectrics and Electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1