Pt@WS2 Mott–Schottky Heterojunction Boosts Light-Driven Active Ion Transport for Enhanced Ionic Power Harvesting

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-12-16 DOI:10.1021/acsnano.4c15723
Pan Jia, Zhitong Han, Jiansheng Chen, Junchao Liu, Lina Wang, Xinyi Zhang, Yue Guo, Jinming Zhou
{"title":"Pt@WS2 Mott–Schottky Heterojunction Boosts Light-Driven Active Ion Transport for Enhanced Ionic Power Harvesting","authors":"Pan Jia, Zhitong Han, Jiansheng Chen, Junchao Liu, Lina Wang, Xinyi Zhang, Yue Guo, Jinming Zhou","doi":"10.1021/acsnano.4c15723","DOIUrl":null,"url":null,"abstract":"Bioinspired light-driven ion transport in two-dimensional (2D) nanofluidics offers exciting prospects for solar energy harvesting. Current single-component nanofluidic membranes often suffer from low light-induced driving forces due to the easy recombination of photogenerated electron–hole pairs. Herein, we present a Pt@WS<sub>2</sub> Mott–Schottky heterojunction-based 2D nanofluidic membrane for boosting light-driven active ion transport and solar enhanced ionic power harvesting. The photovoltaic effect in the Mott–Schottky heterojunctions and photoconductance effect in WS<sub>2</sub> multilayers account for more efficient charge separation across the nanofluidic membrane. In an equilibrium electrolyte solution, we observe directional cationic transport from the WS<sub>2</sub> to the Pt region under visible-light illumination. In 10<sup>–3</sup> M KCl electrolyte, the photocurrent and photovoltage reach 11.84 μA cm<sup>–2</sup> and 30.67 mV, respectively. Moreover, the output power can reach up to 5.02 W m<sup>–2</sup> under light illumination, compared to a value of 2.56 W m<sup>–2</sup> without irradiation. This work not only introduces a driving mechanism for boosting ion transport but also offers a pathway for integrating multiple energy sources.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"87 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15723","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioinspired light-driven ion transport in two-dimensional (2D) nanofluidics offers exciting prospects for solar energy harvesting. Current single-component nanofluidic membranes often suffer from low light-induced driving forces due to the easy recombination of photogenerated electron–hole pairs. Herein, we present a Pt@WS2 Mott–Schottky heterojunction-based 2D nanofluidic membrane for boosting light-driven active ion transport and solar enhanced ionic power harvesting. The photovoltaic effect in the Mott–Schottky heterojunctions and photoconductance effect in WS2 multilayers account for more efficient charge separation across the nanofluidic membrane. In an equilibrium electrolyte solution, we observe directional cationic transport from the WS2 to the Pt region under visible-light illumination. In 10–3 M KCl electrolyte, the photocurrent and photovoltage reach 11.84 μA cm–2 and 30.67 mV, respectively. Moreover, the output power can reach up to 5.02 W m–2 under light illumination, compared to a value of 2.56 W m–2 without irradiation. This work not only introduces a driving mechanism for boosting ion transport but also offers a pathway for integrating multiple energy sources.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维(2D)纳米流体中由生物启发的光驱动离子传输为太阳能收集提供了令人兴奋的前景。由于光生电子-空穴对容易发生重组,目前的单组分纳米流体膜往往存在光诱导驱动力低的问题。在此,我们提出了一种基于 Pt@WS2 Mott-Schottky 异质结的二维纳米流体膜,用于增强光驱动的活性离子传输和太阳能增强离子功率收集。莫特-肖特基异质结中的光伏效应和 WS2 多层膜中的光导效应使纳米流体膜上的电荷分离更加高效。在平衡电解质溶液中,我们观察到在可见光照射下,阳离子从 WS2 向 Pt 区域定向传输。在 10-3 M KCl 电解质中,光电流和光电压分别达到 11.84 μA cm-2 和 30.67 mV。此外,在光照条件下,输出功率可达 5.02 W m-2,而在无光照条件下仅为 2.56 W m-2。这项工作不仅引入了一种促进离子传输的驱动机制,还提供了一种整合多种能源的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Thrombospondin-1 Small Interfering RNA-Loaded Lipid Nanoparticles Inhibiting Intimal Hyperplasia of Electrospun Polycaprolactone Vascular Grafts Graphene-Assisted Electron-Based Imaging of Individual Organic and Biological Macromolecules: Structure and Transient Dynamics Integrated Oxygen-Constraining Strategy for Ni-Rich Layered Oxide Cathodes Nanoscale Balance of Energy Loss and Quantum Efficiency for High-Efficiency Polythiophene-Based Organic Solar Cells Giant Colloidal Quantum Dot/α-Ga2O3 Heterojunction for High Performance UV-Vis-IR Broadband Photodetector.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1