Neurosteroids and Translocator Protein (TSPO) in neuroinflammation.

IF 4.4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemistry international Pub Date : 2024-12-15 DOI:10.1016/j.neuint.2024.105916
Elisa Angeloni, Lorenzo Germelli, Barbara Costa, Claudia Martini, Eleonora Da Pozzo
{"title":"Neurosteroids and Translocator Protein (TSPO) in neuroinflammation.","authors":"Elisa Angeloni, Lorenzo Germelli, Barbara Costa, Claudia Martini, Eleonora Da Pozzo","doi":"10.1016/j.neuint.2024.105916","DOIUrl":null,"url":null,"abstract":"<p><p>Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases. Such level fluctuations may be useful for both diagnosis and treatment of these pathological conditions. Beyond steroid administration, enhancing the endogenous production by Translocator Protein (TSPO) targeting has been proposed to restore these altered pathological levels. However, the neurosteroid quantification and the prediction of their final effects are often troublesome, sometimes controversial and context dependent, due to the complexity of neurosteroid biosynthetic pathway and to the low produced amounts. The aim of this review is to report recent advances, and technical limitations, in neurosteroid-related strategies against neuroinflammation.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105916"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuint.2024.105916","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases. Such level fluctuations may be useful for both diagnosis and treatment of these pathological conditions. Beyond steroid administration, enhancing the endogenous production by Translocator Protein (TSPO) targeting has been proposed to restore these altered pathological levels. However, the neurosteroid quantification and the prediction of their final effects are often troublesome, sometimes controversial and context dependent, due to the complexity of neurosteroid biosynthetic pathway and to the low produced amounts. The aim of this review is to report recent advances, and technical limitations, in neurosteroid-related strategies against neuroinflammation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurochemistry international
Neurochemistry international 医学-神经科学
CiteScore
8.40
自引率
2.40%
发文量
128
审稿时长
37 days
期刊介绍: Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.
期刊最新文献
Previous strength training attenuates ouabain-induced bipolar disorder-related behaviors and memory deficits in rats: involvement of hippocampal ERK/CREB and PI3K/AKT/mTOR pathways. Brain endocannabinoid control of metabolic and non-metabolic feeding behaviors. Neurosteroids and Translocator Protein (TSPO) in neuroinflammation. VNS facilitates the neurological function recovery after ischemia/reperfusion injury by regulating the A1/A2 polarization of astrocytes through the NMU-NMUR2 pathway. Role of PI3Kγ in the polarization, migration, and phagocytosis of microglia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1