Xiaoman Duan, Xiao Fan Ding, Samira Khoz, Xiongbiao Chen, Ning Zhu
{"title":"Development of a low-dose strategy for propagation-based imaging helical computed tomography (PBI-HCT): high image quality and reduced radiation dose.","authors":"Xiaoman Duan, Xiao Fan Ding, Samira Khoz, Xiongbiao Chen, Ning Zhu","doi":"10.1088/2057-1976/ad9f66","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background</i>. Propagation-based imaging computed tomography (PBI-CT) has been recently emerging for visualizing low-density materials due to its excellent image contrast and high resolution. Based on this, PBI-CT with a helical acquisition mode (PBI-HCT) offers superior imaging quality (e.g., fewer ring artifacts) and dose uniformity, making it ideal for biomedical imaging applications. However, the excessive radiation dose associated with high-resolution PBI-HCT may potentially harm objects or hosts being imaged, especially in live animal imaging, raising a great need to reduce radiation dose.<i>Methods</i>. In this study, we strategically integrated Sparse2Noise (a deep learning approach) with PBI-HCT imaging to reduce radiation dose without compromising image quality. Sparse2Noise uses paired low-dose noisy images with different photon fluxes and projection numbers for high-quality reconstruction via a convolutional neural network (CNN). Then, we examined the imaging quality and radiation dose of PBI-HCT imaging using Sparse2Noise, as compared to when Sparse2Noise was used in low-dose PBI-CT imaging (circular scanning mode). Furthermore, we conducted a comparison study on the use of Sparse2Noise versus two other state-of-the-art low-dose imaging algorithms (i.e., Noise2Noise and Noise2Inverse) for imaging low-density materials using PBI-HCT at equivalent dose levels.<i>Results</i>. Sparse2Noise allowed for a 90% dose reduction in PBI-HCT imaging while maintaining high image quality. As compared to PBI-CT imaging, the use of Sparse2Noise in PBI-HCT imaging shows more effective by reducing additional radiation dose (30%-36%). Furthermore, helical scanning mode also enhances the performance of existing low-dose algorithms (Noise2Noise and Noise2Inverse); nevertheless, Sparse2Noise shows significantly higher signal-to-noise ratio (SNR) value compared to Noise2Noise and Noise2Inverse at the same radiation dose level.<i>Conclusions and significance</i>. Our proposed low-dose imaging strategy Sparse2Noise can be effectively applied to PBI-HCT imaging technique and requires lower dose for acceptable quality imaging. This would represent a significant advance imaging for low-density materials imaging and for future live animals imaging applications.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad9f66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background. Propagation-based imaging computed tomography (PBI-CT) has been recently emerging for visualizing low-density materials due to its excellent image contrast and high resolution. Based on this, PBI-CT with a helical acquisition mode (PBI-HCT) offers superior imaging quality (e.g., fewer ring artifacts) and dose uniformity, making it ideal for biomedical imaging applications. However, the excessive radiation dose associated with high-resolution PBI-HCT may potentially harm objects or hosts being imaged, especially in live animal imaging, raising a great need to reduce radiation dose.Methods. In this study, we strategically integrated Sparse2Noise (a deep learning approach) with PBI-HCT imaging to reduce radiation dose without compromising image quality. Sparse2Noise uses paired low-dose noisy images with different photon fluxes and projection numbers for high-quality reconstruction via a convolutional neural network (CNN). Then, we examined the imaging quality and radiation dose of PBI-HCT imaging using Sparse2Noise, as compared to when Sparse2Noise was used in low-dose PBI-CT imaging (circular scanning mode). Furthermore, we conducted a comparison study on the use of Sparse2Noise versus two other state-of-the-art low-dose imaging algorithms (i.e., Noise2Noise and Noise2Inverse) for imaging low-density materials using PBI-HCT at equivalent dose levels.Results. Sparse2Noise allowed for a 90% dose reduction in PBI-HCT imaging while maintaining high image quality. As compared to PBI-CT imaging, the use of Sparse2Noise in PBI-HCT imaging shows more effective by reducing additional radiation dose (30%-36%). Furthermore, helical scanning mode also enhances the performance of existing low-dose algorithms (Noise2Noise and Noise2Inverse); nevertheless, Sparse2Noise shows significantly higher signal-to-noise ratio (SNR) value compared to Noise2Noise and Noise2Inverse at the same radiation dose level.Conclusions and significance. Our proposed low-dose imaging strategy Sparse2Noise can be effectively applied to PBI-HCT imaging technique and requires lower dose for acceptable quality imaging. This would represent a significant advance imaging for low-density materials imaging and for future live animals imaging applications.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.