José Alejandro Rojas-López, Alexis Cabrera-Santiago, Albin Ariel García-Andino, Luis Alfonso Olivares-Jiménez, Rodolfo Alfonso
{"title":"Experimental small fields output factors determination for an MR-linac according to the measuring position and orientation of the detector.","authors":"José Alejandro Rojas-López, Alexis Cabrera-Santiago, Albin Ariel García-Andino, Luis Alfonso Olivares-Jiménez, Rodolfo Alfonso","doi":"10.1088/2057-1976/ad9f67","DOIUrl":null,"url":null,"abstract":"<p><p><i>Purpose</i>. To investigate the effect of the position and orientation of the detector and its influence on the determination of output factors (OF) for small fields for a linear accelerator (MR-linac) integrated with 1.5 T magnetic resonance following the TRS-483 formalism.<i>Methods</i>. OF were measured for small fields in the central axis following the recommendations of the manufacturer and at the dose maximum following the TRS-483 formalism. OF were determined using a microDiamond (MD), a Semiflex (SF) 31021 ionization chamber, Gafchromic EBT3 film and were calculated in Monaco treatment planning system (TPS). Additionally, the orientation response of SF was evaluated, placing it in parallel and perpendicular direction to the radiation beam. The values were compared taking film measurements as reference. The corrected factors,ΩQclinical,msrfclinical,msr, required the use of output correction factorkQclinical,msrfclinical,msrtaken from previous reports. Finally, there are proposed experimentalkQclinical,msrfclinical,msrfor SF and MD, following the measured values in this work.<i>Results</i>. In fields smaller than 4 cm, the positioning of the SF and MD in the central axis or at the point of dose maximum affects the reading significantly with differences of up to 6% and 4%, respectively. For the data calculated in the TPS, the maximum difference of the OF between MD and TPS for fields greater than 2 cm was 0.6% and below this field size the TPS underestimates the OF up to 10.6%. The orientation (parallel or perpendicular) of the SF regarding the radiation beam has a considerable impact on the OF for fields smaller than 3 cm, showing a variation up to 10% for the field of 0.5 cm.<i>Conclusion</i>. This study provides valuable information on the challenges and limitations of measuring output factors in small fields. The outcomes have important implications for the practice of radiosurgery, underscoring the need for accuracy in detector placement and orientation, as well as the importance of using more advanced technologies and more robust measurement methods.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad9f67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose. To investigate the effect of the position and orientation of the detector and its influence on the determination of output factors (OF) for small fields for a linear accelerator (MR-linac) integrated with 1.5 T magnetic resonance following the TRS-483 formalism.Methods. OF were measured for small fields in the central axis following the recommendations of the manufacturer and at the dose maximum following the TRS-483 formalism. OF were determined using a microDiamond (MD), a Semiflex (SF) 31021 ionization chamber, Gafchromic EBT3 film and were calculated in Monaco treatment planning system (TPS). Additionally, the orientation response of SF was evaluated, placing it in parallel and perpendicular direction to the radiation beam. The values were compared taking film measurements as reference. The corrected factors,ΩQclinical,msrfclinical,msr, required the use of output correction factorkQclinical,msrfclinical,msrtaken from previous reports. Finally, there are proposed experimentalkQclinical,msrfclinical,msrfor SF and MD, following the measured values in this work.Results. In fields smaller than 4 cm, the positioning of the SF and MD in the central axis or at the point of dose maximum affects the reading significantly with differences of up to 6% and 4%, respectively. For the data calculated in the TPS, the maximum difference of the OF between MD and TPS for fields greater than 2 cm was 0.6% and below this field size the TPS underestimates the OF up to 10.6%. The orientation (parallel or perpendicular) of the SF regarding the radiation beam has a considerable impact on the OF for fields smaller than 3 cm, showing a variation up to 10% for the field of 0.5 cm.Conclusion. This study provides valuable information on the challenges and limitations of measuring output factors in small fields. The outcomes have important implications for the practice of radiosurgery, underscoring the need for accuracy in detector placement and orientation, as well as the importance of using more advanced technologies and more robust measurement methods.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.